基于YOLOv8的水稻虫害识别系统,加入BiLevelRoutingAttention注意力进行创新优化

本文主要是介绍基于YOLOv8的水稻虫害识别系统,加入BiLevelRoutingAttention注意力进行创新优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  💡💡💡本文摘要:基于YOLOv8的水稻虫害识别,阐述了整个数据制作和训练可视化过程,并加入BiLevelRoutingAttention注意力进行优化,最终mAP从原始的 0.697提升至0.732

 博主简介

AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8、v9优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;

原创自研系列, 2024年计算机视觉顶会创新点

《YOLOv8原创自研》

《YOLOv5原创自研》

《YOLOv7原创自研》

《YOLOv9魔术师》

23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高

《YOLOv8魔术师》

 《YOLOv7魔术师》

《YOLOv5/YOLOv7魔术师》

《RT-DETR魔术师》

应用系列篇:

《YOLO小目标检测》

《深度学习工业缺陷检测》

《YOLOv8-Pose关键点检测》

1.YOLOv8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.水稻虫害识别数据集介绍

含稻秆蝇、二化螟、褐飞虱、蓟马、蛴螬、蝼蛄等常见害虫,共14个水稻害虫类别,1200多张图像,yolo标注完整,全部原始数据


nc: 14
names: ['rice leaf roller', 'rice leaf caterpillar', 'paddy stem maggot','asiatic rice borer', 'yellow rice borer', 'rice gall midge', 
'Rice Stemfly', 'brown plant hopper', 'white backed plant hopper', 
'small brown plant hopper', 'rice water weevil', 'rice leafhopper', 
'grain spreader thrips', 'rice shell pest']

 

3.如何训练YOLOv8

3.1 配置data.yaml

ps:建议填写绝对路径

train: F:\ultralytics-RiceInsect\RiceInsectData\train
val: F:\ultralytics-RiceInsect\RiceInsectData\valnc: 14
names: ['rice leaf roller', 'rice leaf caterpillar', 'paddy stem maggot', 'asiatic rice borer', 'yellow rice borer', 'rice gall midge', 'Rice Stemfly', 'brown plant hopper', 'white backed plant hopper', 'small brown plant hopper', 'rice water weevil', 'rice leafhopper', 'grain spreader thrips', 'rice shell pest']

3.2 如何训练

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/yolov8.yaml')#model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data='RiceInsectData/data.yaml',cache=True,imgsz=640,epochs=200,batch=32,workers=0,device='0',optimizer='SGD', # using SGD# resume='', # last.pt path# amp=False # close amp# fraction=0.2,project='runs/train',name='exp',)

3.3 训练可视化结果

YOLOv8 summary (fused): 168 layers, 3008378 parameters, 0 gradients, 8.1 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:01<00:00,  1.86it/s]all        188        199        0.7      0.631      0.697      0.426rice leaf roller        188         28      0.834      0.821      0.866      0.585rice leaf caterpillar        188         26      0.563      0.538      0.632      0.398paddy stem maggot        188          4      0.659      0.488      0.582      0.358asiatic rice borer        188         26      0.602      0.654      0.727      0.495yellow rice borer        188         11      0.806      0.755      0.813      0.537rice gall midge        188         14      0.793      0.857      0.863      0.417Rice Stemfly        188          4      0.457       0.75      0.745      0.461brown plant hopper        188         15      0.829      0.733      0.844      0.529
white backed plant hopper        188          7       0.42      0.286      0.288      0.144
small brown plant hopper        188          9      0.614      0.333      0.573      0.372rice water weevil        188         22      0.858      0.909      0.901       0.58rice leafhopper        188         24      0.695       0.75      0.697      0.371grain spreader thrips        188          3      0.677      0.667      0.687      0.479rice shell pest        188          6          1      0.291      0.543      0.241
Speed: 0.2ms preprocess, 1.6ms inference, 0.0ms loss, 0.6ms postprocess per image

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

预测结果: 

4.如何优化

4.1加入BiLevelRoutingAttention介绍

论文:https://arxiv.org/pdf/2303.08810.pdf
 

背景:注意力机制是Vision Transformer的核心构建模块之一,可以捕捉长程依赖关系。然而,由于需要计算所有空间位置之间的成对令牌交互,这种强大的功能会带来巨大的计算负担和内存开销。为了减轻这个问题,一系列工作尝试通过引入手工制作和内容无关的稀疏性到关注力中来解决这个问题,如限制关注操作在局部窗口、轴向条纹或扩张窗口内。

本文方法:本文提出一种动态稀疏注意力的双层路由方法。对于一个查询,首先在粗略的区域级别上过滤掉不相关的键值对,然后在剩余候选区域(即路由区域)的并集中应用细粒度的令牌对令牌关注力。所提出的双层路由注意力具有简单而有效的实现方式,利用稀疏性来节省计算和内存,只涉及GPU友好的密集矩阵乘法。在此基础上构建了一种新的通用Vision Transformer,称为BiFormer。

其中图(a)是原始的注意力实现,其直接在全局范围内操作,导致高计算复杂性和大量内存占用;而对于图(b)-(d),这些方法通过引入具有不同手工模式的稀疏注意力来减轻复杂性,例如局部窗口、轴向条纹和扩张窗口等;而图(e)则是基于可变形注意力通过不规则网格来实现图像自适应稀疏性;作者认为以上这些方法大都是通过将 手工制作 和 与内容无关 的稀疏性引入到注意力机制来试图缓解这个问题。因此,本文通过双层路由(bi-level routing)提出了一种新颖的动态稀疏注意力(dynamic sparse attention ),以实现更灵活的计算分配和内容感知,使其具备动态的查询感知稀疏性,如图(f)所示。

基于BRA模块,本文构建了一种新颖的通用视觉转换器BiFormer。如上图所示,其遵循大多数的vision transformer架构设计,也是采用四级金字塔结构,即下采样32倍。

具体来说,BiFormer在第一阶段使用重叠块嵌入,在第二到第四阶段使用块合并模块来降低输入空间分辨率,同时增加通道数,然后是采用连续的BiFormer块做特征变换。需要注意的是,在每个块的开始均是使用 的深度卷积来隐式编码相对位置信息。随后依次应用BRA模块和扩展率为 的 2 层 多层感知机(Multi-Layer Perceptron, MLP)模块,分别用于交叉位置关系建模和每个位置嵌

4.2 改进后的网络结构

4.3 性能

mAP从原始的 0.697提升至0.732

YOLOv8-C2f_BiLevelRoutingAttention summary (fused): 196 layers, 2653434 parameters, 0 gradients, 11.9 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:01<00:00,  1.75it/s]all        188        199      0.733      0.645      0.732      0.409rice leaf roller        188         28      0.827      0.851      0.872      0.574rice leaf caterpillar        188         26      0.629      0.577      0.675      0.382paddy stem maggot        188          4      0.571        0.5      0.575      0.358asiatic rice borer        188         26      0.685      0.577      0.753      0.453yellow rice borer        188         11      0.521      0.695      0.632      0.383rice gall midge        188         14      0.754      0.714      0.913       0.41Rice Stemfly        188          4      0.633       0.75      0.807      0.453brown plant hopper        188         15      0.776      0.693      0.782      0.419
white backed plant hopper        188          7      0.579      0.591      0.523      0.248
small brown plant hopper        188          9      0.755      0.345      0.663       0.29rice water weevil        188         22      0.913      0.864      0.936      0.608rice leafhopper        188         24      0.722      0.708      0.748      0.372grain spreader thrips        188          3      0.967      0.667      0.806      0.519rice shell pest        188          6      0.935        0.5      0.561      0.263
Speed: 0.2ms preprocess, 1.9ms inference, 0.0ms loss, 0.7ms postprocess per image

 

 

关注下方名片点击关注,即可源码获取途径。  

这篇关于基于YOLOv8的水稻虫害识别系统,加入BiLevelRoutingAttention注意力进行创新优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960040

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

MySQL进行分片合并的实现步骤

《MySQL进行分片合并的实现步骤》分片合并是指在分布式数据库系统中,将不同分片上的查询结果进行整合,以获得完整的查询结果,下面就来具体介绍一下,感兴趣的可以了解一下... 目录环境准备项目依赖数据源配置分片上下文分片查询和合并代码实现1. 查询单条记录2. 跨分片查询和合并测试结论分片合并(Shardin

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer