基于YOLOv8的水稻虫害识别系统,加入BiLevelRoutingAttention注意力进行创新优化

本文主要是介绍基于YOLOv8的水稻虫害识别系统,加入BiLevelRoutingAttention注意力进行创新优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  💡💡💡本文摘要:基于YOLOv8的水稻虫害识别,阐述了整个数据制作和训练可视化过程,并加入BiLevelRoutingAttention注意力进行优化,最终mAP从原始的 0.697提升至0.732

 博主简介

AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8、v9优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;

原创自研系列, 2024年计算机视觉顶会创新点

《YOLOv8原创自研》

《YOLOv5原创自研》

《YOLOv7原创自研》

《YOLOv9魔术师》

23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高

《YOLOv8魔术师》

 《YOLOv7魔术师》

《YOLOv5/YOLOv7魔术师》

《RT-DETR魔术师》

应用系列篇:

《YOLO小目标检测》

《深度学习工业缺陷检测》

《YOLOv8-Pose关键点检测》

1.YOLOv8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.水稻虫害识别数据集介绍

含稻秆蝇、二化螟、褐飞虱、蓟马、蛴螬、蝼蛄等常见害虫,共14个水稻害虫类别,1200多张图像,yolo标注完整,全部原始数据


nc: 14
names: ['rice leaf roller', 'rice leaf caterpillar', 'paddy stem maggot','asiatic rice borer', 'yellow rice borer', 'rice gall midge', 
'Rice Stemfly', 'brown plant hopper', 'white backed plant hopper', 
'small brown plant hopper', 'rice water weevil', 'rice leafhopper', 
'grain spreader thrips', 'rice shell pest']

 

3.如何训练YOLOv8

3.1 配置data.yaml

ps:建议填写绝对路径

train: F:\ultralytics-RiceInsect\RiceInsectData\train
val: F:\ultralytics-RiceInsect\RiceInsectData\valnc: 14
names: ['rice leaf roller', 'rice leaf caterpillar', 'paddy stem maggot', 'asiatic rice borer', 'yellow rice borer', 'rice gall midge', 'Rice Stemfly', 'brown plant hopper', 'white backed plant hopper', 'small brown plant hopper', 'rice water weevil', 'rice leafhopper', 'grain spreader thrips', 'rice shell pest']

3.2 如何训练

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/yolov8.yaml')#model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data='RiceInsectData/data.yaml',cache=True,imgsz=640,epochs=200,batch=32,workers=0,device='0',optimizer='SGD', # using SGD# resume='', # last.pt path# amp=False # close amp# fraction=0.2,project='runs/train',name='exp',)

3.3 训练可视化结果

YOLOv8 summary (fused): 168 layers, 3008378 parameters, 0 gradients, 8.1 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:01<00:00,  1.86it/s]all        188        199        0.7      0.631      0.697      0.426rice leaf roller        188         28      0.834      0.821      0.866      0.585rice leaf caterpillar        188         26      0.563      0.538      0.632      0.398paddy stem maggot        188          4      0.659      0.488      0.582      0.358asiatic rice borer        188         26      0.602      0.654      0.727      0.495yellow rice borer        188         11      0.806      0.755      0.813      0.537rice gall midge        188         14      0.793      0.857      0.863      0.417Rice Stemfly        188          4      0.457       0.75      0.745      0.461brown plant hopper        188         15      0.829      0.733      0.844      0.529
white backed plant hopper        188          7       0.42      0.286      0.288      0.144
small brown plant hopper        188          9      0.614      0.333      0.573      0.372rice water weevil        188         22      0.858      0.909      0.901       0.58rice leafhopper        188         24      0.695       0.75      0.697      0.371grain spreader thrips        188          3      0.677      0.667      0.687      0.479rice shell pest        188          6          1      0.291      0.543      0.241
Speed: 0.2ms preprocess, 1.6ms inference, 0.0ms loss, 0.6ms postprocess per image

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

预测结果: 

4.如何优化

4.1加入BiLevelRoutingAttention介绍

论文:https://arxiv.org/pdf/2303.08810.pdf
 

背景:注意力机制是Vision Transformer的核心构建模块之一,可以捕捉长程依赖关系。然而,由于需要计算所有空间位置之间的成对令牌交互,这种强大的功能会带来巨大的计算负担和内存开销。为了减轻这个问题,一系列工作尝试通过引入手工制作和内容无关的稀疏性到关注力中来解决这个问题,如限制关注操作在局部窗口、轴向条纹或扩张窗口内。

本文方法:本文提出一种动态稀疏注意力的双层路由方法。对于一个查询,首先在粗略的区域级别上过滤掉不相关的键值对,然后在剩余候选区域(即路由区域)的并集中应用细粒度的令牌对令牌关注力。所提出的双层路由注意力具有简单而有效的实现方式,利用稀疏性来节省计算和内存,只涉及GPU友好的密集矩阵乘法。在此基础上构建了一种新的通用Vision Transformer,称为BiFormer。

其中图(a)是原始的注意力实现,其直接在全局范围内操作,导致高计算复杂性和大量内存占用;而对于图(b)-(d),这些方法通过引入具有不同手工模式的稀疏注意力来减轻复杂性,例如局部窗口、轴向条纹和扩张窗口等;而图(e)则是基于可变形注意力通过不规则网格来实现图像自适应稀疏性;作者认为以上这些方法大都是通过将 手工制作 和 与内容无关 的稀疏性引入到注意力机制来试图缓解这个问题。因此,本文通过双层路由(bi-level routing)提出了一种新颖的动态稀疏注意力(dynamic sparse attention ),以实现更灵活的计算分配和内容感知,使其具备动态的查询感知稀疏性,如图(f)所示。

基于BRA模块,本文构建了一种新颖的通用视觉转换器BiFormer。如上图所示,其遵循大多数的vision transformer架构设计,也是采用四级金字塔结构,即下采样32倍。

具体来说,BiFormer在第一阶段使用重叠块嵌入,在第二到第四阶段使用块合并模块来降低输入空间分辨率,同时增加通道数,然后是采用连续的BiFormer块做特征变换。需要注意的是,在每个块的开始均是使用 的深度卷积来隐式编码相对位置信息。随后依次应用BRA模块和扩展率为 的 2 层 多层感知机(Multi-Layer Perceptron, MLP)模块,分别用于交叉位置关系建模和每个位置嵌

4.2 改进后的网络结构

4.3 性能

mAP从原始的 0.697提升至0.732

YOLOv8-C2f_BiLevelRoutingAttention summary (fused): 196 layers, 2653434 parameters, 0 gradients, 11.9 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:01<00:00,  1.75it/s]all        188        199      0.733      0.645      0.732      0.409rice leaf roller        188         28      0.827      0.851      0.872      0.574rice leaf caterpillar        188         26      0.629      0.577      0.675      0.382paddy stem maggot        188          4      0.571        0.5      0.575      0.358asiatic rice borer        188         26      0.685      0.577      0.753      0.453yellow rice borer        188         11      0.521      0.695      0.632      0.383rice gall midge        188         14      0.754      0.714      0.913       0.41Rice Stemfly        188          4      0.633       0.75      0.807      0.453brown plant hopper        188         15      0.776      0.693      0.782      0.419
white backed plant hopper        188          7      0.579      0.591      0.523      0.248
small brown plant hopper        188          9      0.755      0.345      0.663       0.29rice water weevil        188         22      0.913      0.864      0.936      0.608rice leafhopper        188         24      0.722      0.708      0.748      0.372grain spreader thrips        188          3      0.967      0.667      0.806      0.519rice shell pest        188          6      0.935        0.5      0.561      0.263
Speed: 0.2ms preprocess, 1.9ms inference, 0.0ms loss, 0.7ms postprocess per image

 

 

关注下方名片点击关注,即可源码获取途径。  

这篇关于基于YOLOv8的水稻虫害识别系统,加入BiLevelRoutingAttention注意力进行创新优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960040

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr