C#图像:1.图像区域分割与提取

2024-05-04 18:44

本文主要是介绍C#图像:1.图像区域分割与提取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(1)创建一个名为SplitImage的窗体的应用程序,将窗体改名为FormSplitImage。


(2)创建一个名为ImageProcessingLibrary的类库程序,为该工程添加名为ImageProcessing的静态类

(3)为ImageProcessing类添加统计直方图的静态函数

(4)在ImageProcessing类中添加二值化处理函数BinaryImage

(5)在SplitImage工程中引用ImageProcessingLibrary工程,并添加ImageProcessingLibrary, System.Drawing命名空间。
(6)在窗体中重写OnPaint事件函数,并在函数中添加绘制原始图像、显示直方图和图像分割与提取后的图像

程序框架 :

 被窗体的应用程序引用的类库代码:

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Drawing.Imaging;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Threading.Tasks;namespace ImageProcessingLibrary
{public static class ImageProcessing{/// 获取直方图数组,并绘制直方图/// <param name="image">需要处理的图像</param>/// <param name="indexColor">处理的颜色索引值,Blue:0,Green:1,Red:2</param>/// <param name="histogram">直方图统计数组</param>/// <returns>绘制好的直方图</returns>public static Bitmap GetHistogram(Bitmap image, int indexColor, out int[] histogram){histogram = new int[256];                               //直方图统计数组BitmapData data = image.LockBits(new Rectangle(new Point(), image.Size),ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb);  //将图像锁定到内存中byte[] datas = new byte[data.Stride * image.Height];   //图像数组Marshal.Copy(data.Scan0, datas, 0, datas.Length);     //将图像在内存中的数据复制到图像数组中for (int y = 0; y < image.Height * data.Stride; y += data.Stride) //data.Stride代表图像一行数据的字节总数/步长为data.Stride{//外层循环是遍历行for (int x = 0; x < image.Width * 3; x += 3)//遍历当前行中的每个像素/每个像素由三个字节(RGB)组成//每个颜色分量(红色、绿色或蓝色)可以有的不同强度级别就是2^8,即256个级别{int index = y + x;                     //颜色在内存中的索引/每个索引偏移量3字节(对应R,G,B)histogram[datas[index + indexColor]]++;//增加直方图中对应颜色分量出现的次数}}image.UnlockBits(data);byte maxValue = 0;                             //直方图中的最大值for (int value = 1; value < 256; value++){if (histogram[value] > histogram[maxValue]) maxValue = (byte)value;}Bitmap imageHistogram = new Bitmap(256, 256);Graphics GHistogram = Graphics.FromImage(imageHistogram);GHistogram.Clear(Color.Blue);for (int value = 1; value< 256; value++){int length = byte.MaxValue * histogram[value] / histogram[maxValue];GHistogram.DrawLine(new Pen(Color.FromArgb(value, value, value), 1f), value,256, value, 256 - length);                            //绘制直方图}Font font = new Font("宋体", 9f);//绘制统计标识for (int value = 32; value < 256; value += 32){int count = histogram[maxValue] / 8 * value / 32;Pen pen = new Pen(Color.Lime);pen.DashStyle = DashStyle.DashDot;SizeF sizeCount = GHistogram.MeasureString(count.ToString(), font);GHistogram.DrawLine(pen, 0, 255 - value, 255, 255 - value);//绘制数量等级线GHistogram.DrawString(count.ToString(), font, Brushes.Red, 5, 255 - value - sizeCount.Height / 2);SizeF sizeValue = GHistogram.MeasureString(value.ToString(), font);GHistogram.DrawLine(Pens.Red, value, 250, value, 255);//绘制颜色值等级线GHistogram.DrawString(value.ToString(), font, Brushes.Red, value - sizeValue.Width / 2, 240);}font.Dispose();return imageHistogram;}/// 将图像进行二值化处理/// <param name="image">需要处理的图像</param>/// <param name="indexColor">处理的颜色索引值,Blue:0,Green:1,Red:2</param>/// <param name="thresholdMin">阈值下限</param>/// <param name="thresholdMax">阈值上限</param>public static void BinaryImage(Bitmap image, int indexColor, int thresholdMin, int thresholdMax){//将图像锁定到内存中BitmapData data = image.LockBits(new Rectangle(new Point(), image.Size), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);byte[] datas = new byte[data.Stride * image.Height];           //图像数组Marshal.Copy(data.Scan0, datas, 0, datas.Length);              //将图像在内存中的数据复制到图像数组中for (int y = 0; y < image.Height * data.Stride; y += data.Stride){for (int x = 0; x < image.Width * 3; x += 3){int index = y + x;//根据阈值将图像分成黑色和白色,其中阈值内的为黑色,阈值外的为白色if (datas[index + indexColor] >= thresholdMin && datas[index + indexColor] <= thresholdMax)datas[index] = datas[index + 1] = datas[index + 2] = 0;elsedatas[index] = datas[index + 1] = datas[index + 2] = 255;}}Marshal.Copy(datas, 0, data.Scan0, datas.Length);      //将图像数组复制到内存中image.UnlockBits(data);                                //将图像从内存中解锁}}}
/*假设颜色分量是8位的,那么每个颜色分量(红色、绿色或蓝色)可以有的不同强度级别就是2^8,即256个级别。* 这是因为8位可以表示从0到255的整数,总共256个不同的数值。在数字图像处理中,8位颜色深度是常见的,* 因为它提供了足够的动态范围来表示大多数自然和人工颜色的细微差别,同时保持数据量相对较小。当你说“直方图大小为256”时,你指的是直方图的横坐标(即颜色强度的可能值)有256个不同的条目,
每个条目对应一个特定的颜色强度值(从0到255)。直方图的纵坐标通常表示该颜色强度值在图像中出现的频率或像素数量。因此,如果我们想为8位颜色分量的图像构建直方图,我们将创建一个大小为256的数组,数组的每个元素初始化为0。
然后,我们遍历图像的每个像素,对于每个像素的特定颜色分量(如红色、绿色或蓝色),我们增加直方图中对应颜色强度值的计数。
这个过程最终会给我们一个表示图像中每个颜色强度出现频率的直方图。*/

窗体的应用程序,重写OnPaint事件函数代码:

using ImageProcessingLibrary;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;namespace SplitImage
{public partial class FormSplitImage : Form{public FormSplitImage(){InitializeComponent();}protected override void OnPaint(PaintEventArgs e)//重写OnPaint事件函数{Graphics G = e.Graphics;Bitmap image = new Bitmap("123456.jpg");                       //加载图像Rectangle rectImage = new Rectangle(new Point(), image.Size);G.DrawImage(image, rectImage);                                   //绘制原始图像int[] histogram;                                                   //直方图统计数组Rectangle rectHistogram = new Rectangle(rectImage.Width, 0, 256, 256); //获取图像的灰度直方图(起始点X,Y,像素大小x,y)Bitmap imageHistogram = ImageProcessing.GetHistogram(image, 0, out histogram);//这里out返回了直方图数组histogramG.DrawImage(imageHistogram, rectHistogram);                        //绘制直方图rectImage.Offset(0, image.Height);//矩形位置调整指定的量,即往下(y)移一个图片高度,定义了绘制分割后的图像的rectImageImageProcessing.BinaryImage(image, 1, 0, 150);                     //通过二值化将目标分割出来()G.DrawImage(image, rectImage);                                     //绘制分割后的图像image.Dispose();                                                   //释放图像imageHistogram.Dispose();                                          //释放直方图图像}}
}

     在程序路径下准备图片:123456.jpg 

 运行SplitImage窗体的应用程序:

这篇关于C#图像:1.图像区域分割与提取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/959861

相关文章

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

C#和Unity中的中介者模式使用方式

《C#和Unity中的中介者模式使用方式》中介者模式通过中介者封装对象交互,降低耦合度,集中控制逻辑,适用于复杂系统组件交互场景,C#中可用事件、委托或MediatR实现,提升可维护性与灵活性... 目录C#中的中介者模式详解一、中介者模式的基本概念1. 定义2. 组成要素3. 模式结构二、中介者模式的特点