GiantPandaCV | FasterTransformer Decoding 源码分析(二)-Decoder框架介绍

本文主要是介绍GiantPandaCV | FasterTransformer Decoding 源码分析(二)-Decoder框架介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“GiantPandaCV,仅用于学术分享,侵权删,干货满满。

原文链接:FasterTransformer Decoding 源码分析(二)-Decoder框架介绍

作者丨进击的Killua

来源丨https://zhuanlan.zhihu.com/p/669303360

编辑丨GiantPandaCV

Decoder模块是FasterTransformer Decoding model中最核心的处理模块,在GiantPandaCV | FasterTransformer Decoding 源码分析(一)-整体框架介绍一文中详细介绍了Decoder模块在整体中所处的位置,本文试图从流程框架层面对该模块进行源码分析,梳理出主要处理模块,后续再逐步对各个模块实现进行解析。

一、整体框架

Decoder在整体解码过程中的位置

代码地址:link

下图中左边是经典的Transformer Decoder结构,右边是FasterTransformer Decoder结构,主要有以下几点区别

  1. 将最后的LayerNorm提前到入口,这里并不能加速流程,但是这种顺序在实践中表现得比较好,允许模型更好地调整输入的分布,使其更适合通过self-attention进行处理,最后处理完会在调用外层再做一次LayerNorm。

  2. 将 SelfAttention和CrossAttention中最后一个 Linear 的 Add Bias,Add Res(残差连接)以及 LayerNorm 合并成一个 (Add Bias & Add Res & LayerNorm) Kernel,降低 Kernel Launch 开销以及提升访问带宽。

  3. 将 FFN 的最后一个 Linear 的 Add Bias,Add Res(残差连接)合并成一个 (Add Bias & Add Res) Kernel,降低 Kernel Launch 开销以及提升访问带宽。

Decoder具体处理流程

二、数据处理流

接下来结合框架图来解析下forward函数的数据处理流程,整体流程在代码上还是非常清晰的。

Input & Output

template<typename T>
void Decoder<T>::forward(std::vector<Tensor>*                      output_tensors,const std::vector<Tensor>*                input_tensors,const std::vector<DecoderLayerWeight<T>>* decoder_layer_weight)
{// input tensors://      decoder_input [batch_size, hidden_dimension],//      encoder_output [batch_size, mem_max_seq_len, memory_hidden_dimension],//      encoder_sequence_length [batch_size],//      finished [batch_size],//      step [1] on cpu//      sequence_lengths [batch_size]//      cache_indirection [local_batch_size / beam_width, beam_width, max_seq_len]//              Here, local_batch_size contains the beam_width, so local_batch_size / beam_width//              is real local_batch_size.// output tensors://      decoder_output [batch_size, hidden_dimension],//      key_cache [num_layer, batch, head_num, size_per_head // x, max_seq_len, x]//      value_cache [num_layer, batch, head_num, max_seq_len, size_per_head]//      key_mem_cache [num_layer, batch_size, mem_max_seq_len, hidden_dimension],//      value_mem_cache [num_layer, batch_size, mem_max_seq_len, hidden_dimension]

这里初看其实是不知道这些输入输出shape背后的含义的,没关系这里先做个标记,等我们全部都看完了再回过头来看这里的意义。我们可以大致知道Decoder的输入tensor中包含:

  1. batch_size个单词的embedding表示或上一个step的解码输出。[batch_size, hidden_dimension]

  2. encoder层的输出。[batch_size, mem_max_seq_len, memory_hidden_dimension]

  3. encoder层输入序列的实际长度。[batch_size]

  4. batch中是否已经解码完成。[batch_size]

  5. 当前解码的步长。

  6. 已解码句子的序列长度。[batch_size]

  7. 中间缓存。(这个暂时还无法理解)

注:这里的batch_size实际是batch_size * beam_size的结果,即对每个batch的beam_size个词分别解码。

Decoder的输出tensor包含:

  1. batch个解码器的词向量输出。[batch_size, hidden_dimension]

  2. self-attention中前面steps所计算出来的key buffer。[num_layer, batch, head_num, size_per_head // x, max_seq_len, x],其中 x =4(FP32), x=8(FP16).

  3. self-attention中前面steps所计算出来的value buffer。

  4. cross-attention中前面steps所计算出来的key buffer。

  5. cross-attention中前面steps所计算出来的value buffer。

逐层解码

decoder是逐层进行解码的,接下来每层都会使用以下这些模块进行推理。

Cache

        size_t self_key_cache_offset = l;for (auto t = output_tensors->at(1).shape.begin() + 1; t != output_tensors->at(1).shape.end(); ++t) {self_key_cache_offset *= (*t);}size_t self_value_cache_offset = l;for (auto t = output_tensors->at(2).shape.begin() + 1; t != output_tensors->at(2).shape.end(); ++t) {self_value_cache_offset *= (*t);}

这里是对cache的索引,cache是fastertransformer性能优化的一大重点,思想很简单,就是复用前面step计算的结果,避免重复计算,以空间来换时间。代码中对self-attention和cross-attention中线性化处理后的key和value进行了缓存。针对cross-attention,因为key和value是来自于encoder的输出(如图所示),所以每个step上使用的key和value是相同的。

但是针对self-attention,key和value这里笔者还没完全理解为什么可以复用,这里也先留个标记(self_attention的key,value和query的生成逻辑可能不一样)。

LayerNorm

        invokeGeneralLayerNorm(decoder_normed_input_,decoder_input,decoder_layer_weight->at(l).pre_layernorm_weights.gamma,decoder_layer_weight->at(l).pre_layernorm_weights.beta,layernorm_eps_,batch_size,hidden_units_,(float*)nullptr,0,stream_);

这里调用layernorm的kernel函数进行处理,我们后续单独介绍kernel实现。

SelfAttention

        TensorMap self_attention_input_tensors{{"input_query", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, decoder_normed_input_}},{"finished", input_tensors->at(3)},{"sequence_lengths", input_tensors->at(5)},{"step", input_tensors->at(4)}};self_attention_input_tensors.insertIfValid("cache_indirection", input_tensors->at(6));TensorMap self_attention_output_tensors{{"hidden_features", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, self_attn_output_}},{"key_cache",Tensor{MEMORY_GPU,data_type,std::vector<size_t>(output_tensors->at(1).shape.begin() + 1, output_tensors->at(1).shape.end()),output_tensors->at(1).getPtrWithOffset(self_key_cache_offset)}},{"value_cache",Tensor{MEMORY_GPU,data_type,std::vector<size_t>(output_tensors->at(2).shape.begin() + 1, output_tensors->at(2).shape.end()),output_tensors->at(2).getPtrWithOffset<T>(self_value_cache_offset)}}};self_attention_layer_->forward(&self_attention_output_tensors,&self_attention_input_tensors,&decoder_layer_weight->at(l).self_attention_weights);

这里以map的方式对输入输出tensor进行了封装,再调用self_attention_layer层进行推理,详细介绍见:进击的Killua:FasterTransformer Decoding 源码分析(四)-SelfAttention实现介绍。

Add Bias & Add Res & LayerNorm

        invokeGeneralAddBiasResidualPreLayerNorm(self_attn_output_,normed_self_attn_output_,self_attn_output_,decoder_input,decoder_layer_weight->at(l).self_attn_layernorm_weights.gamma,decoder_layer_weight->at(l).self_attn_layernorm_weights.beta,decoder_layer_weight->at(l).self_attention_weights.attention_output_weight.bias,layernorm_eps_,batch_size,hidden_units_,(float*)nullptr,(float*)nullptr,(float*)nullptr,(float*)nullptr,0,stream_);sync_check_cuda_error();

这里将add bias、add res和laynorm操作合成一个kernel进行处理,也是优化的经典方法,文章进击的Killua:FasterTransformer Decoding 源码分析(五)-AddBiasResidualLayerNorm介绍 做了详细介绍。

CrossAttention

        TensorMap cross_attention_input_tensors{{"input_query", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, normed_self_attn_output_}},{"encoder_output", input_tensors->at(1)},{"encoder_sequence_length", input_tensors->at(2)},{"finished", input_tensors->at(3)},{"step", input_tensors->at(4)}};TensorMap cross_attention_output_tensors{{"hidden_features", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, cross_attn_output_}},{"key_cache",Tensor{MEMORY_GPU,data_type,std::vector<size_t>(output_tensors->at(3).shape.begin() + 1, output_tensors->at(3).shape.end()),output_tensors->at(3).getPtrWithOffset<T>(mem_cache_offset)}},{"value_cache",Tensor{MEMORY_GPU,data_type,std::vector<size_t>(output_tensors->at(4).shape.begin() + 1, output_tensors->at(4).shape.end()),output_tensors->at(4).getPtrWithOffset<T>(mem_cache_offset)}}};cross_attention_layer_->forward(&cross_attention_output_tensors,&cross_attention_input_tensors,&decoder_layer_weight->at(l).cross_attention_weights);

这里以map的方式对输入输出tensor进行了封装,再调用cross_attention_layer层进行推理,详见文章:进击的Killua:FasterTransformer Decoding 源码分析(六)-CrossAttention介绍

Add Bias & Add Res & LayerNorm

        invokeGeneralAddBiasResidualPreLayerNorm(cross_attn_output_,normed_cross_attn_output_,cross_attn_output_,self_attn_output_,decoder_layer_weight->at(l).cross_attn_layernorm_weights.gamma,decoder_layer_weight->at(l).cross_attn_layernorm_weights.beta,decoder_layer_weight->at(l).cross_attention_weights.attention_output_weight.bias,layernorm_eps_,batch_size,hidden_units_,(float*)nullptr,(float*)nullptr,(float*)nullptr,(float*)nullptr,0,stream_);sync_check_cuda_error();

和上述类似。

FFN

        TensorMap ffn_input_tensors({{"ffn_input", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, normed_cross_attn_output_}}});TensorMap ffn_output_tensors({{"ffn_output", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, decoder_output}}});ffn_layer_->forward(&ffn_output_tensors, &ffn_input_tensors, &decoder_layer_weight->at(l).ffn_weights);

FFN详细介绍如下文所示。

进击的Killua:FasterTransformer Decoding 源码分析(七)-FFNLayer MoE(上篇)

进击的Killua:FasterTransformer Decoding 源码分析(八)-FFNLayer MoE(下篇)

Add Bias & Add Res

        invokeAddBiasResidual(decoder_output,cross_attn_output_,decoder_layer_weight->at(l).ffn_weights.output_weight.bias,batch_size,hidden_units_,stream_);sync_check_cuda_error();

这里将add bias、add res操作合成一个kernel进行处理,属于fused op的常用操作。

三、总结

总体来看fastertransformer的decoder主要用了小OP融合、大OP重写、重复计算缓存化这几个优化策略来进行加速,接下来开始逐步剖析内部细节。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于GiantPandaCV | FasterTransformer Decoding 源码分析(二)-Decoder框架介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959424

相关文章

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++