栈的表达式求值中的应用——逆波兰表达式求值+中缀表达式转后缀表达式

2024-05-04 13:52

本文主要是介绍栈的表达式求值中的应用——逆波兰表达式求值+中缀表达式转后缀表达式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 逆波兰表达式(后缀表达式)求值
    • 思路讲解
    • AC代码
  • 2. 中缀表达式转后缀表达式
    • 分析
    • 方法总结
  • 3. 中缀表达式求值

1. 逆波兰表达式(后缀表达式)求值

链接: link
在这里插入图片描述

这道题目叫做逆波兰表达式求值,那什么是逆波兰表达式呢
我们可以一起来了解一下:
在这里插入图片描述
结合题目中给的测试用例给大家解释一下:
在这里插入图片描述
我们正常写的表达式,就比如题目中的这个:(2 + 1) * 3
这种写法叫做中缀算术表达式,即运算符写在操作数的中间,但是这种写法计算机是不能直接计算的,因为涉及运算符优先级的问题,比如1+2*3,应该先算*
所以呢,这里就需要我们做一件事情,就是把它变成后缀表达式,其实就是根据优先级对表达式中的运算符排一个序,并且放到对应的操作数后面。
就比如题目中给的这个示例:((2 + 1) * 3)这个表达式对应的后缀表达式就是["2","1","+","3","*"](题中是把它放到一个字符串数组中了)。
即1和2先进行后面的+,得到的结果再和3进行后面的*,得到最终结果。这样就直接从前往后算,不用考虑优先级的问题了。

那现在大家对逆波兰表达式应该有一个大致的了解了。

思路讲解

但是呢,单要解这道题目的话,其实很好搞:

我们只需要借助一个栈就搞定了。
具体怎么做呢?
我们去遍历给的逆波兰表达式对应的字符串数组,如果对应的元素是数字,我们就让该操作数入栈,如果遇到操作符,我们就去取栈顶的前两个元素(并pop掉)进行对应的运算(第一个是右操作数,第二个是左操作数),然后将结果入栈,后续重复上述操作,最终栈里面唯一的那个元素就是要求的结果。
举个栗子:
在这里插入图片描述
遍历tokens,2 1入栈,接着遇到+,取出 1 2相加,得到结果3入栈,后面又是一个3入栈,接着遇到* ,取出3 3相乘,结果9入栈。
最终栈里面唯一的元素9就是结果。

AC代码

在这里插入图片描述

class Solution {
public:int evalRPN(vector<string>& tokens) {stack<int> st;for(auto& str:tokens){if(str=="+"||str=="-"||str=="*"||str=="/"){int right=st.top();st.pop();int left=st.top();st.pop();switch(str[0]){case '+':st.push(left+right);break;case '-':st.push(left-right);break;case '*':st.push(left*right);break;case '/':st.push(left/right);break;}}else{st.push(stoi(str));}}return st.top();}
};

在这里插入图片描述

2. 中缀表达式转后缀表达式

那现在大家再来思考一个问题:
如果给我们一个中缀表达式,我们如何把它转换成对应的后缀表达式

分析

中缀转后缀呢,也是需要借助一个栈,具体怎么做呢?
比如现在有这样一个中缀表达式1+2*3-4
怎么把它转成后缀呢?
🆗,我们还是从头去遍历这个表达式,如果遇到的是操作数,就输出
在这里插入图片描述
如果遇到的是的是操作符,那这时要分情况进行分析:
如果此时栈为空,就让该操作符进栈;

在这里插入图片描述
在这里插入图片描述
如果遇到的是操作符,且此时栈不为空,则取栈顶的操作符与当前操作符比较,比较啥呢——优先级:
如果比栈顶操作符优先级高,就让该操作符进栈,为什么是进栈而不是拿它进行运算呢?
因为后面有可能还有优先级更高的,所以先进栈。

在这里插入图片描述
那进栈之后呢?继续取下一个进行判断是操作数还是操作符。
在这里插入图片描述
如果比栈顶操作符优先级低或者相等,则出栈顶的操作符输出(即此时栈顶的这个操作符可以进行运算了)
在这里插入图片描述
然后再去判断栈是否为空,不为空再拿当前操作符和栈顶操作符比较,进行相应操作,为空就入栈。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
遍历结束后,如果栈不为空,将剩余操作符输出。
在这里插入图片描述
此时,就得到对应的后缀表达式了。
在这里插入图片描述

但是,如果是带括号的情况呢?

比如1+2*(4-5)+6/7,怎么处理?
🆗,那如果按照上面的分析,1输出,+入栈,2输出,*的优先级比栈顶的+高,*也入栈,接着遇到了括号,怎么办?
在这里插入图片描述
如果不加括号的话,后面-比*优先级低,那应该让*先出栈运算,但是现在-在括号里面,所以-应该先运算,所以要认为-的优先级更高。
那我们可以怎么处理呢?当然这里的方法可能不止一种,我们可以这样做:
遇到(,我们认为它的优先级很低,但是我们不拿(做比较,直接让它入栈
在这里插入图片描述
然后遇到括号里的-,栈不为空,比较,因为我们说了认为(的优先级很低,所以-也入栈
在这里插入图片描述
那继续往后走遇到)怎么办?
🆗,)呢我们也认为它的优先级很低,但是)我们要拿它去比较,因为我们认为)优先级很低,所以此时栈顶的-是不是就被成功弹出了。
在这里插入图片描述
然后栈不为空继续跟栈顶比,那此时) 就遇到 (了,拿这时怎么做呢?
这时直接把(pop掉,不输出,然后跳过) 继续看下一个,因为后缀表达式优先级都排好了就不需要括号了。

在这里插入图片描述
拿继续往后走遇到+,栈不为空,跟栈顶比,比栈顶优先级低,栈顶操作符*输出,继续栈还不为空,继续比,优先级相等,出栈顶操作符+
在这里插入图片描述
然后栈空了,+入栈
在这里插入图片描述
然后遇到6输出,遇到/优先级比+高,入栈,然后7输出
在这里插入图片描述
就遍历完了,再把剩余操作符输出
在这里插入图片描述
就得出结果后缀表达式了,大家可以验证一下。

在这里插入图片描述
当然处理括号可能有很多种方法,我们这里提供的只是其中一种,而且我们这种方法如果遇到有些极端的情况可能也不一定处理的了,可能还需要加一些特殊处理。
另外我们会发现就是遇到(是不是好像去开了一个新栈,在这个新栈里去处理括号里的这个子表达式,所以如果这样的问题也可以考虑递归去搞,每次遇到(就递归去处理这个子表达式,处理完回去递归调用的地方继续处理后面的。

方法总结

在这里插入图片描述

3. 中缀表达式求值

那大家再来思考一下,如果给一个中缀表达式,我们该如何求它的值呢?

🆗,是不是就是上面两种操作的结合啊。
在这里插入图片描述

这篇关于栈的表达式求值中的应用——逆波兰表达式求值+中缀表达式转后缀表达式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959351

相关文章

Java Lambda表达式的使用详解

《JavaLambda表达式的使用详解》:本文主要介绍JavaLambda表达式的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言二、Lambda表达式概述1. 什么是Lambda表达式?三、Lambda表达式的语法规则1. 无参数的Lambda表

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

C#通过进程调用外部应用的实现示例

《C#通过进程调用外部应用的实现示例》本文主要介绍了C#通过进程调用外部应用的实现示例,以WINFORM应用程序为例,在C#应用程序中调用PYTHON程序,具有一定的参考价值,感兴趣的可以了解一下... 目录窗口程序类进程信息类 系统设置类 以WINFORM应用程序为例,在C#应用程序中调用python程序

Java应用如何防止恶意文件上传

《Java应用如何防止恶意文件上传》恶意文件上传可能导致服务器被入侵,数据泄露甚至服务瘫痪,因此我们必须采取全面且有效的防范措施来保护Java应用的安全,下面我们就来看看具体的实现方法吧... 目录恶意文件上传的潜在风险常见的恶意文件上传手段防范恶意文件上传的关键策略严格验证文件类型检查文件内容控制文件存储