Seaborn绘图指南:7大核心函数打造惊艳统计图形

2024-05-04 05:12

本文主要是介绍Seaborn绘图指南:7大核心函数打造惊艳统计图形,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言:Seaborn的魅力与应用领域

在浩瀚的数据海洋中,如何让枯燥的数字跃然纸上,变成一目了然的视觉盛宴?答案就是数据可视化!而Python中的Seaborn库,凭借其优雅的风格、丰富的统计图表以及与Pandas无缝对接的特性,成为众多数据分析师与科学家的“可视化神器”。无论是探索数据分布、比较类别差异,还是揭示变量关联,Seaborn都能助你一臂之力。本文将通过7个核心函数的实战示例,带你领略Seaborn的强大魅力。

2. 准备工作:安装Seaborn与导入相关库

确保已安装Seaborn(若未安装,可通过pip install seaborn命令进行安装)。接下来,让我们导入所需库:

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

Seaborn基于Matplotlib构建,所以我们也导入了matplotlib.pyplot以控制图表显示。此外,使用Pandas处理数据更为便捷,故引入pandas库。一切就绪,开始我们的Seaborn之旅吧!

3. 示例1:sns.distplot() - 绘制直方图与核密度图

首先登场的是distplot(),它能同时绘制直方图与核密度图,直观呈现数据分布情况。假设我们有一组身高数据heights

heights = [170, 17½, 180, 185, 190, 195, 200]
sns.distplot(heights)
plt.show()

运行这段代码,你会看到直方图展示了各身高段频数,核密度曲线则平滑地刻画了整体分布形态。distplot()让你一眼看出数据集中趋势、偏度与峰度。

4. 示例2:sns.boxplot() - 展示箱线图理解数据分布

箱线图是揭示数据分布特征的有力工具,boxplot()帮你轻松绘制。以DataFrame df中的age列为例:

sns.boxplot(x="gender", y="age", data=df)
plt.show()

这里,我们按性别(gender)分组,展示了年龄(age)的五数概括(最小值、下四分位数、中位数、上四分位数、最大值)。一眼看出男女年龄分布是否存在显著差异,异常值也无所遁形。

5. 示例3:sns.violinplot() - 小提琴图揭示数据密度分布

小提琴图结合了箱线图与核密度图的优点,violinplot()助你轻松绘制:

sns.violinplot(x="gender", y="age", data=df)
plt.show()

小提琴图的宽度表示数据密度,形状展示了分布的偏斜程度。相比箱线图,它提供了更细腻的分布信息,尤其适合多组数据间的对比分析。

6. 示例4:sns.barplot() - 条形图对比分类变量的统计量

想快速比较不同类别之间的统计量?试试barplot()

sns.barplot(x="category", y="sales", hue="region", data=df)
plt.show()

此例中,我们按产品类别(category)绘制条形图,高度代表销售额(sales),并通过颜色(hue)区分地区(region)。一图胜千言,类别间销售差异与地区影响一目了然。

7. 示例5:sns.heatmap() - 热力图展现数据矩阵的相关性

探究变量间相关性,热力图无疑是最佳选择。使用heatmap(),只需几行代码:

correlation_matrix = df.corr()
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
plt.show()

计算DataFrame df的 correlation_matrix,然后绘制热力图。暖色调表示正相关,冷色调表示负相关,数值大小由颜色深浅体现。加上annot=True,直接在图上标注相关系数,方便解读。

8. 示例6:sns.pairplot() - 成对散点图探索多元变量关系

面对多个变量,如何快速洞察它们之间的关系?pairplot()来帮忙:

sns.pairplot(df[['height', 'weight', 'bmi']])
plt.show()

选择DataFrame df中的身高、体重、BMI三列,pairplot()会生成所有两两变量间的散点图,以及各自变量的直方图。多元关系尽在眼前,无需逐一绘制。

9. 示例7:sns.lmplot() - 线性回归图展示变量间关系

最后,借助lmplot()绘制线性回归图,直观呈现变量间的线性关系:

sns.lmplot(x='hours_studied', y='exam_score', data=df, scatter_kws={'alpha': 0.})
plt.show()

这篇关于Seaborn绘图指南:7大核心函数打造惊艳统计图形的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958399

相关文章

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

macOS彻底卸载Python的超完整指南(推荐!)

《macOS彻底卸载Python的超完整指南(推荐!)》随着python解释器的不断更新升级和项目开发需要,有时候会需要升级或者降级系统中的python的版本,系统中留存的Pytho版本如果没有卸载干... 目录MACOS 彻底卸载 python 的完整指南重要警告卸载前检查卸载方法(按安装方式)1. 卸载

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别