HDU 2588 GCD GCD问题总结

2024-05-03 19:08
文章标签 问题 总结 hdu gcd 2588

本文主要是介绍HDU 2588 GCD GCD问题总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                                                                                                             GCD(一)

题目:

 The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.

   求满足题目要求的x个数。

算法:

   直接筛选会超时,根据题目给出的不等式特点GCD(x,N) >= M 可以知道满足题目要求的一定是N的因子而且必须大于等于M(想想为什么?解体关键)。所以,只要枚举N的大于等于M的因子就可以了。因为,在10^9内最多的因子数不超过30个。所以,总时间是O(30*loglogn)接近常数。

 

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;typedef __int64 LL;
const int MOD = 1000000007;int euler_phi(int n){int k = (int)sqrt(n + 0.5);int ans = n;for(int i = 2;i <= k;++i) if(0 == n % i){ans = ans / i * (i - 1);while(0 == n % i) n /= i;}if(n > 1) ans = ans / n * (n - 1);return ans;
}LL getFact(int n,int m){LL res = 0;int k = sqrt(n + 0.5);int tmp;for(int i = 1;i <= k;++i){if(0 == n % i){tmp = n / i;if(i >= m) res += euler_phi(n / i);if(tmp >= m && i != tmp) res += euler_phi(n / tmp);}}return res;
}int main()
{int T,n,m;scanf("%d",&T);while(T--){scanf("%d%d",&n,&m);if(n == 1 && m == 1){puts("1");continue;}printf("%I64d\n",getFact(n,m));}return 0;
}


 

  

                                GCD(二)

题目:

   给你一个数N,使得在1~N之间能够找到x使得x满足gcd( x ,  N  ) >= M,求解gcd(x,N)的和。

算法:

  由上题的知识可以知道,1...N的互质个数为欧拉函数值且其gcd只能是N的因子。所以,对于N = x * y。我们只要

求出x在y内的互质个数就好了,结果乘以x就是gcd = x的和了.

证明:

   SUM(gcd = x ) = 1*x + 2*x + 3*x ..... y*x

  所以,当gcd = x的时候只要求出y的欧拉函数值就好了。

 

而一个数的因子又可以在sqrt(N)内求出。

 

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;typedef long long LL;int euler_phi(int n){int m = sqrt(n + 0.5);int ans = n;for(int i = 2;i <= m;++i) if(0 == n % i){ans = ans / i * (i - 1);while(0 == n % i) n /= i;}if(n > 1) ans = ans / n * (n - 1);return ans;
}LL solve(int n,int m){LL res = 0;int k = sqrt(n + 0.5);for(int i = 1;i <= k;++i){if(0 == n % i){if(i >= m)res += i * euler_phi(n / i);if(i != n / i && n / i >= m)res += n / i * euler_phi(i);}}return res;
}int main()
{int n,m;while(~scanf("%d%d",&n,&m)){printf("%lld\n",solve(n,m));}return 0;
}


 

                                                                                                  GCD(三)

 

题目:

    The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M,please answer sum of  X satisfies 1<=X<=N and (X,N)>=M.

 

算法:

   跟GCD(一)不同的是这题求得是满足gcd(x,n) >= m ,x的和。而由欧拉函数中的一个定理可以知道

 

所以,只要SUM(n = x * y) = y*α(y) / 2 * x 

因为要的是x的和,而我们是在把X先进行X / x处理的所以最后要在乘回上x得到原值。

 

 
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;typedef long long LL;
const int MOD = 1000000007;int euler_phi(int n){int k = (int)sqrt(n + 0.5);int ans = n;for(int i = 2;i <= k;++i) if(0 == n % i){ans = ans / i * (i - 1);while(0 == n % i) n /= i;}if(n > 1) ans = ans / n * (n - 1);return ans;
}LL getFact(int n,int m){LL res = 0;int k = sqrt(n + 0.5);LL tmp;for(int i = 1;i <= k;++i){if(0 == n % i){tmp = n / i;if(i >= m){LL t1 = tmp * euler_phi(tmp) / 2 % MOD;t1 = t1 ? t1 : 1;res = (res + t1 * i) % MOD;}if(tmp >= m && i != tmp) {LL t1 = i * euler_phi(i) / 2 % MOD;t1 = t1 ? t1 : 1;res = (res + t1 * tmp) % MOD;}}}return res >= MOD ? res%MOD : res;
}int main()
{int T,n,m;scanf("%d",&T);while(T--){scanf("%d%d",&n,&m);printf("%lld\n",getFact(n,m));}return 0;
}

 

这篇关于HDU 2588 GCD GCD问题总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957430

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co