政安晨:【Keras机器学习示例演绎】(三十)—— 使用变换器进行视频分类

本文主要是介绍政安晨:【Keras机器学习示例演绎】(三十)—— 使用变换器进行视频分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

数据收集

设置

定义超参数

数据准备

构建基于变换器的模型

培训的效用函数

模型训练和推理


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:用混合变压器训练视频分类器。

本示例是使用 CNN-RNN 架构(卷积神经网络-循环神经网络)进行视频分类示例的后续。这一次,我们将使用基于变换器的模型(Vaswani 等人)对视频进行分类。阅读本示例后,您将了解如何开发基于变换器的混合模型,用于在 CNN 特征图上运行的视频分类。

数据收集


与本例的前身一样,我们将使用 UCF101 数据集的子样本,这是一个著名的基准数据集。如果您想对更大的子样本甚至整个数据集进行操作,请参考下面这个Notebook。

!wget -q https://github.com/sayakpaul/Action-Recognition-in-TensorFlow/releases/download/v1.0.0/ucf101_top5.tar.gz
!tar -xf ucf101_top5.tar.gz

设置

import os
import keras
from keras import layers
from keras.applications.densenet import DenseNet121from tensorflow_docs.vis import embedimport matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import imageio
import cv2

定义超参数

MAX_SEQ_LENGTH = 20
NUM_FEATURES = 1024
IMG_SIZE = 128EPOCHS = 5

数据准备


在本例中,除了以下改动外,我们将主要沿用相同的数据准备步骤:

我们将图像大小从 224x224 缩小到 128x128,以加快计算速度。
我们不再使用预先训练好的 InceptionV3 网络,而是使用预先训练好的 DenseNet121 进行特征提取。
我们直接将较短的视频填充到 MAX_SEQ_LENGTH 长度。


首先,让我们加载 DataFrames。

train_df = pd.read_csv("train.csv")
test_df = pd.read_csv("test.csv")print(f"Total videos for training: {len(train_df)}")
print(f"Total videos for testing: {len(test_df)}")center_crop_layer = layers.CenterCrop(IMG_SIZE, IMG_SIZE)def crop_center(frame):cropped = center_crop_layer(frame[None, ...])cropped = keras.ops.convert_to_numpy(cropped)cropped = keras.ops.squeeze(cropped)return cropped# Following method is modified from this tutorial:
# https://www.tensorflow.org/hub/tutorials/action_recognition_with_tf_hub
def load_video(path, max_frames=0, offload_to_cpu=False):cap = cv2.VideoCapture(path)frames = []try:while True:ret, frame = cap.read()if not ret:breakframe = frame[:, :, [2, 1, 0]]frame = crop_center(frame)if offload_to_cpu and keras.backend.backend() == "torch":frame = frame.to("cpu")frames.append(frame)if len(frames) == max_frames:breakfinally:cap.release()if offload_to_cpu and keras.backend.backend() == "torch":return np.array([frame.to("cpu").numpy() for frame in frames])return np.array(frames)def build_feature_extractor():feature_extractor = DenseNet121(weights="imagenet",include_top=False,pooling="avg",input_shape=(IMG_SIZE, IMG_SIZE, 3),)preprocess_input = keras.applications.densenet.preprocess_inputinputs = keras.Input((IMG_SIZE, IMG_SIZE, 3))preprocessed = preprocess_input(inputs)outputs = feature_extractor(preprocessed)return keras.Model(inputs, outputs, name="feature_extractor")feature_extractor = build_feature_extractor()# Label preprocessing with StringLookup.
label_processor = keras.layers.StringLookup(num_oov_indices=0, vocabulary=np.unique(train_df["tag"]), mask_token=None
)
print(label_processor.get_vocabulary())def prepare_all_videos(df, root_dir):num_samples = len(df)video_paths = df["video_name"].values.tolist()labels = df["tag"].valueslabels = label_processor(labels[..., None]).numpy()# `frame_features` are what we will feed to our sequence model.frame_features = np.zeros(shape=(num_samples, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32")# For each video.for idx, path in enumerate(video_paths):# Gather all its frames and add a batch dimension.frames = load_video(os.path.join(root_dir, path))# Pad shorter videos.if len(frames) < MAX_SEQ_LENGTH:diff = MAX_SEQ_LENGTH - len(frames)padding = np.zeros((diff, IMG_SIZE, IMG_SIZE, 3))frames = np.concatenate(frames, padding)frames = frames[None, ...]# Initialize placeholder to store the features of the current video.temp_frame_features = np.zeros(shape=(1, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32")# Extract features from the frames of the current video.for i, batch in enumerate(frames):video_length = batch.shape[0]length = min(MAX_SEQ_LENGTH, video_length)for j in range(length):if np.mean(batch[j, :]) > 0.0:temp_frame_features[i, j, :] = feature_extractor.predict(batch[None, j, :])else:temp_frame_features[i, j, :] = 0.0frame_features[idx,] = temp_frame_features.squeeze()return frame_features, labels
Total videos for training: 594
Total videos for testing: 224
['CricketShot', 'PlayingCello', 'Punch', 'ShavingBeard', 'TennisSwing']

在 train_df 和 test_df 上调用 prepare_all_videos() 需要约 20 分钟才能完成。因此,为了节省时间,我们在这里下载已经预处理过的 NumPy 数组:

!!wget -q https://git.io/JZmf4 -O top5_data_prepared.tar.gz
!!tar -xf top5_data_prepared.tar.gz
train_data, train_labels = np.load("train_data.npy"), np.load("train_labels.npy")
test_data, test_labels = np.load("test_data.npy"), np.load("test_labels.npy")print(f"Frame features in train set: {train_data.shape}")
[]Frame features in train set: (594, 20, 1024)

构建基于变换器的模型


我们将在弗朗索瓦-乔莱(François Chollet)所著《深度学习与 Python》(第二版)一书这一章中分享的代码基础上构建模型。

首先,构成 Transformer 基本模块的自我注意层是不分顺序的。

由于视频是有序的帧序列,我们需要我们的变换器模型考虑到顺序信息。我们通过位置编码来实现这一点。我们只需用嵌入层嵌入视频中帧的位置。然后,我们将这些位置嵌入添加到预先计算的 CNN 特征图中。

class PositionalEmbedding(layers.Layer):def __init__(self, sequence_length, output_dim, **kwargs):super().__init__(**kwargs)self.position_embeddings = layers.Embedding(input_dim=sequence_length, output_dim=output_dim)self.sequence_length = sequence_lengthself.output_dim = output_dimdef build(self, input_shape):self.position_embeddings.build(input_shape)def call(self, inputs):# The inputs are of shape: `(batch_size, frames, num_features)`inputs = keras.ops.cast(inputs, self.compute_dtype)length = keras.ops.shape(inputs)[1]positions = keras.ops.arange(start=0, stop=length, step=1)embedded_positions = self.position_embeddings(positions)return inputs + embedded_positions

现在,我们可以为变换器创建一个子类层。

class TransformerEncoder(layers.Layer):def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):super().__init__(**kwargs)self.embed_dim = embed_dimself.dense_dim = dense_dimself.num_heads = num_headsself.attention = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim, dropout=0.3)self.dense_proj = keras.Sequential([layers.Dense(dense_dim, activation=keras.activations.gelu),layers.Dense(embed_dim),])self.layernorm_1 = layers.LayerNormalization()self.layernorm_2 = layers.LayerNormalization()def call(self, inputs, mask=None):attention_output = self.attention(inputs, inputs, attention_mask=mask)proj_input = self.layernorm_1(inputs + attention_output)proj_output = self.dense_proj(proj_input)return self.layernorm_2(proj_input + proj_output)

培训的效用函数

def get_compiled_model(shape):sequence_length = MAX_SEQ_LENGTHembed_dim = NUM_FEATURESdense_dim = 4num_heads = 1classes = len(label_processor.get_vocabulary())inputs = keras.Input(shape=shape)x = PositionalEmbedding(sequence_length, embed_dim, name="frame_position_embedding")(inputs)x = TransformerEncoder(embed_dim, dense_dim, num_heads, name="transformer_layer")(x)x = layers.GlobalMaxPooling1D()(x)x = layers.Dropout(0.5)(x)outputs = layers.Dense(classes, activation="softmax")(x)model = keras.Model(inputs, outputs)model.compile(optimizer="adam",loss="sparse_categorical_crossentropy",metrics=["accuracy"],)return modeldef run_experiment():filepath = "/tmp/video_classifier.weights.h5"checkpoint = keras.callbacks.ModelCheckpoint(filepath, save_weights_only=True, save_best_only=True, verbose=1)model = get_compiled_model(train_data.shape[1:])history = model.fit(train_data,train_labels,validation_split=0.15,epochs=EPOCHS,callbacks=[checkpoint],)model.load_weights(filepath)_, accuracy = model.evaluate(test_data, test_labels)print(f"Test accuracy: {round(accuracy * 100, 2)}%")return model

模型训练和推理

trained_model = run_experiment()
Epoch 1/516/16 ━━━━━━━━━━━━━━━━━━━━ 0s 160ms/step - accuracy: 0.5286 - loss: 2.6762
Epoch 1: val_loss improved from inf to 7.75026, saving model to /tmp/video_classifier.weights.h516/16 ━━━━━━━━━━━━━━━━━━━━ 7s 272ms/step - accuracy: 0.5387 - loss: 2.6139 - val_accuracy: 0.0000e+00 - val_loss: 7.7503
Epoch 2/515/16 ━━━━━━━━━━━━━━━━━━[37m━━  0s 4ms/step - accuracy: 0.9396 - loss: 0.2264 
Epoch 2: val_loss improved from 7.75026 to 1.96635, saving model to /tmp/video_classifier.weights.h516/16 ━━━━━━━━━━━━━━━━━━━━ 0s 20ms/step - accuracy: 0.9406 - loss: 0.2186 - val_accuracy: 0.4000 - val_loss: 1.9664
Epoch 3/514/16 ━━━━━━━━━━━━━━━━━[37m━━━  0s 4ms/step - accuracy: 0.9823 - loss: 0.0384 
Epoch 3: val_loss did not improve from 1.9663516/16 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9822 - loss: 0.0391 - val_accuracy: 0.3667 - val_loss: 3.7076
Epoch 4/515/16 ━━━━━━━━━━━━━━━━━━[37m━━  0s 4ms/step - accuracy: 0.9825 - loss: 0.0681 
Epoch 4: val_loss did not improve from 1.9663516/16 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9831 - loss: 0.0674 - val_accuracy: 0.4222 - val_loss: 3.7957
Epoch 5/515/16 ━━━━━━━━━━━━━━━━━━[37m━━  0s 4ms/step - accuracy: 1.0000 - loss: 0.0035 
Epoch 5: val_loss improved from 1.96635 to 1.56071, saving model to /tmp/video_classifier.weights.h516/16 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 1.0000 - loss: 0.0033 - val_accuracy: 0.6333 - val_loss: 1.56077/7 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9286 - loss: 0.4434
Test accuracy: 89.29%

注:该模型有 ~423 万个参数,远远多于我们在本例前传中所使用的序列模型(99918 个参数)。这种 Transformer 模型最好使用更大的数据集和更长的预训练时间。

def prepare_single_video(frames):frame_features = np.zeros(shape=(1, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32")# Pad shorter videos.if len(frames) < MAX_SEQ_LENGTH:diff = MAX_SEQ_LENGTH - len(frames)padding = np.zeros((diff, IMG_SIZE, IMG_SIZE, 3))frames = np.concatenate(frames, padding)frames = frames[None, ...]# Extract features from the frames of the current video.for i, batch in enumerate(frames):video_length = batch.shape[0]length = min(MAX_SEQ_LENGTH, video_length)for j in range(length):if np.mean(batch[j, :]) > 0.0:frame_features[i, j, :] = feature_extractor.predict(batch[None, j, :])else:frame_features[i, j, :] = 0.0return frame_featuresdef predict_action(path):class_vocab = label_processor.get_vocabulary()frames = load_video(os.path.join("test", path), offload_to_cpu=True)frame_features = prepare_single_video(frames)probabilities = trained_model.predict(frame_features)[0]plot_x_axis, plot_y_axis = [], []for i in np.argsort(probabilities)[::-1]:plot_x_axis.append(class_vocab[i])plot_y_axis.append(probabilities[i])print(f"  {class_vocab[i]}: {probabilities[i] * 100:5.2f}%")plt.bar(plot_x_axis, plot_y_axis, label=plot_x_axis)plt.xlabel("class_label")plt.xlabel("Probability")plt.show()return frames# This utility is for visualization.
# Referenced from:
# https://www.tensorflow.org/hub/tutorials/action_recognition_with_tf_hub
def to_gif(images):converted_images = images.astype(np.uint8)imageio.mimsave("animation.gif", converted_images, fps=10)return embed.embed_file("animation.gif")test_video = np.random.choice(test_df["video_name"].values.tolist())
print(f"Test video path: {test_video}")
test_frames = predict_action(test_video)
to_gif(test_frames[:MAX_SEQ_LENGTH])
Test video path: v_ShavingBeard_g03_c02.avi1/1 ━━━━━━━━━━━━━━━━━━━━ 20s 20s/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 10ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 557ms/stepShavingBeard: 100.00%Punch:  0.00%CricketShot:  0.00%TennisSwing:  0.00%PlayingCello:  0.00%

我们的模型性能远未达到最佳,因为它是在一个小数据集上训练出来的。


这篇关于政安晨:【Keras机器学习示例演绎】(三十)—— 使用变换器进行视频分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957002

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五