Matlab|二阶锥松弛在配电网最优潮流计算中的应用

2024-05-03 12:44

本文主要是介绍Matlab|二阶锥松弛在配电网最优潮流计算中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、主要内容

二、部分代码

三、程序代码

四、下载链接


一、主要内容

最优潮流计算是电网规划、优化运行的重要基础。首先建立了配电网全天有功损耗最小化的最优潮流计算模型;其次结合辐射型配电网潮流特点建立支路潮流约束,并考虑配电网中的可控单元,包括分布式电源和离散、连续无功补偿装置,建立其出力约束,该模型为非凸非线性模型;然后通过二阶锥松弛将该模型转化为包含整数变量的二阶锥规划模型。

二、部分代码

%% 1.设参
mpc = IEEE33BW;
pload = mpc.Pload;%节点有功负荷
qload = mpc.Qload;%节点无功负荷
branch = mpc.branch;
branch(:,3) = branch(:,3)*100/(12.66^2);%求阻抗标幺值
r = real(branch(:,3));
x = imag(branch(:,3));
T = 24;%时段数为24小时
nb = 33;%节点数
nl = 32;%支路数
pw=[45.56 55.67 60.09 67.99 70.08 65.88 69.75 65.88 55.08 50.34 56.32 60.44 57.90 60.88 45.40 40.71 21.44 27.59 29.08 45.88 50.09 47.80 59.07 56.42];
%光伏发电预测:
pv=[0 0 0 0 0 0 5.80 10.04 15.00 35.56 45.99 56.06 58.09 55.87 45.77 36.08 35.23 18.04 15.79 0 0 0 0 0 ];
​
upstream = zeros(nb,nl);
dnstream = zeros(nb,nl);
for i = 1:nlupstream(i,i) = 1;
end
for i=[1:16,18:20,22:23,25:31]dnstream(i,i+1) = 1;
end
dnstream(1,18) = 1;
dnstream(2,22) = 1;
dnstream(5,25) = 1;
dnstream(33,1) = 1;
​
Vmax = [1.05*1.05*ones(nb-1,T)1.05*1.05*ones(1,T)];
Vmin = [0.95*0.95*ones(nb-1,T)1.05*1.05*ones(1,T)];
Pgmax = [zeros(nb-1,T)ones(1,T)];
Qgmax = [zeros(nb-1,T)ones(1,T)];
%% 2.设变量
V = sdpvar(nb,T);%电压的平方
I = sdpvar(nl,T);%电流的平方
P = sdpvar(nl,T);%线路有功
Q = sdpvar(nl,T);%线路无功
Pg = sdpvar(nb,T);%发电机有功
Qg = sdpvar(nb,T);%发电机无功
gf8=sdpvar(1,T);%节点8光伏
fd12=sdpvar(1,T);%节点12风电
cb18=sdpvar(1,T);%节点18
svc31=sdpvar(1,T);%节点31

三、程序代码

四、下载链接

这篇关于Matlab|二阶锥松弛在配电网最优潮流计算中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956777

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD