Deep Learning Part Seven基于RNN生成文本--24.5.2

2024-05-03 09:52

本文主要是介绍Deep Learning Part Seven基于RNN生成文本--24.5.2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不存在什么完美的文章,就好像没有完美的绝望。

——村上春树《且听风吟》

本章所学的内容

0.引子

本章主要利用LSTM实现几个有趣的应用:

先剧透一下:是AI聊天软件(现在做的ChatGPT(聊天神器,水论文高手等))和图像识别(可以应用于帮助盲人领域)

1.基于 RNN 的语言模型可以生成新的文本

文本生成叙述:

RnnlmGen 类的实现如下所示:

import sys
sys.path.append('..')
import numpy as np
from common.functions import softmax
from ch06.rnnlm import Rnnlm
from ch06.better_rnnlm import BetterRnnlmclass RnnlmGen(Rnnlm):def generate(self, start_id, skip_ids=None, sample_size=100):word_ids = [start_id]x = start_idwhile len(word_ids) < sample_size:x = np.array(x).reshape(1, 1)score = self.predict(x)p = softmax(score.flatten())sampled = np.random.choice(len(p), size=1, p=p)if (skip_ids is None) or (sampled not in skip_ids):x = sampledword_ids.append(int(x))return word_ids

介绍了代码中的参数含义:

现在,使用这个 RnnlmGen 类进行文本生成。这里先在完全没有学习的状态(即权重参数是随机初始值的状态)下生成文本,代码如下所示:

import sys
sys.path.append('..')
from rnnlm_gen import RnnlmGen
from dataset import ptbcorpus, word_to_id, id_to_word = ptb.load_data('train')
vocab_size = len(word_to_id)
corpus_size = len(corpus)model = RnnlmGen()
# model.load_params('../ch06/Rnnlm.pkl')
# 设定start单词和skip单词
start_word = 'you'
start_id = word_to_id[start_word]
skip_words = ['N', '<unk>', '$']
skip_ids = [word_to_id[w] for w in skip_words]# 生成文本
word_ids = model.generate(start_id, skip_ids)
txt = ' '.join([id_to_word[i] for i in word_ids])
txt = txt.replace(' <eos>', '.\n')
print(txt)

初次文本的生成:一句话就是:“真的烂!”

读入学习好的文本后,第二次进行文本生成:就是“勉强是个句子啦!”

第二次学习总结:(抽象为:机器逐步开始理解句子啦!)

改进后的文本生成结果:一句话就是:(行啊,学习的蛮好的,已经会使用语法啦!)

接着,我们使用更大的语料库,让机器加大学习的力度的结果:一句话是“虽然予以仍有些许问题,但是已经是一位合格的语言大师啦,这就是机器语言学习的魅力所在吧,像人类一样慢慢进步,但是就是这货学习不知道疲倦,而且学习速度极快,记忆力极好等”人工智能终究会比人类更加优秀;but 他不过是人类的工具而已,人类创造了他就是让他服务于人类,让人类过得更好!这才是人工智能的发明初衷吧!

不懂:

为何要让人和机器比较呢?二者根本没有任何可比性的,机器本身仅仅是一个工具罢了的,他可以永生不死,可以有好多优点,人类永远也无法超越,但是他必须始终为人类服务,人类最终应该与机器(人工智能)合作共赢,而不是互相残杀!这才是中国智慧的点点星光吧!

2.在进行文本生成时,重复“输入一个单词(字符),基于模型的输出(概率分布)进行采样”这一过程

语言模型的概率方案选择问题:

1.始终如一的选取概率最高的单词

2.概率性获得法,就是概率小的单词也有可能被选中的,(类比买彩票,概率再小也有机会中奖)

最终选取结果:

选择了后者

原因:我们想让每次生成的文本变得不一样的,这样更加有趣,更加灵活多变的。

确定性和概率性的理解:

确定性:就是只选取概率最高的那个,其他的一律不给机会(一成不变)

概率性:就是给概率高的那货的选取概率提高的,其他的也都有机会的(相对灵活多变)

啥是重复概率的输出和采样:

生成语句文本时,就是按照上述概率方法重复计算下一个单词的概率,最后生成一个优秀的句子。

3.通过组合两个 RNN,可以将一个时序数据转换为另一个时序数据(seq2seq)

seq2seq:简单来说,就相当于机器的翻译,让AI翻译软件帮你翻译英语阅读理解(核心:把一种语言通过两个RNN转化成另一种语言)(这里的语言就可以理解为时序数据的)

作者唠叨一下seq2seq的听着就困得原理概念

有意思的来啦,作者用翻译实例实战帮助读者理解seq2seq的核心(将一种事物转化为另一种事物)

seq2seq的内部核心:两个RNN层

的讲解:

一个RNN的任务:编码

另一个RNN的任务:解码

简单理解:类似于:就是一个RNN将中文变成0和1的形式,然后呢,另一个RNN将这些0和1用英文的方式重新生成一个英文版

4.在 seq2seq 中,编码器对输入语句进行编码,解码器接收并解码这个编码信息,获得目标输出语句

好玩的来啦,这部分讲的是机器学习根据字符串计算公式的答案:

通过大量的学习,俗称记答案,来算题的,只能说牛皮!

但你别说,真的可以的!

利用填充法将位数补齐,避免报错。

5.反转输入语句(Reverse)和将编码信息分配给解码器的多个层(Peeky)可以有效提高seq2seq 的精度

seq2seq 的学习代码如下所示:

import sys
sys.path.append('..')
import numpy as np
import matplotlib.pyplot as plt
from dataset import sequence
from common.optimizer import Adam
from common.trainer import Trainer
from common.util import eval_seq2seq
from seq2seq import Seq2seq
from peeky_seq2seq import PeekySeq2seq# 读入数据集
(x_train, t_train), (x_test, t_test) = sequence.load_data('addition.txt')
char_to_id, id_to_char = sequence.get_vocab()# 设定超参数
vocab_size = len(char_to_id)
wordvec_size = 16
hidden_size = 128
batch_size = 128
max_epoch = 25
max_grad = 5.0# 生成模型/优化器/训练器
model = Seq2seq(vocab_size, wordvec_size, hidden_size)
optimizer = Adam()
trainer = Trainer(model, optimizer)acc_list = []
for epoch in range(max_epoch):trainer.fit(x_train, t_train, max_epoch=1,batch_size=batch_size, max_grad=max_grad)correct_num = 0for i in range(len(x_test)):question, correct = x_test[[i]], t_test[[i]]verbose = i < 10correct_num += eval_seq2seq(model, question, correct,id_to_char, verbose)acc = float(correct_num) / len(x_test)acc_list.append(acc)print('val acc %.3f%%' % (acc * 100))

这里描述了:机器学习后,凭借记答案的本领看他能做对几道题,正确率如何。
初次记答案的正确率:惨不忍睹,但值得一提的是有做对的。

通过大牛改进,用反转输入法,记答案的本领再次提高。

 从这里可以看出,记答案的正确率到了50%~60%,正确率显著提高。

# 读入数据集
(x_train, t_train), (x_test, t_test) = sequence.load_data('addition.txt')
...
x_train, x_test = x_train[:, ::-1], x_test[:, ::-1]
...

借助用偷窥大法来提高信息连锁反应,让信息共享,提高正确率。 

PeekyDecoder 类的实现:

class PeekyDecoder:def __init__(self, vocab_size, wordvec_size, hidden_size):V, D, H = vocab_size, wordvec_size, hidden_sizern = np.random.randnembed_W = (rn(V, D) / 100).astype('f')lstm_Wx = (rn( H + D , 4 * H) / np.sqrt(H + D)).astype('f')lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')lstm_b = np.zeros(4 * H).astype('f')affine_W = (rn( H + H , V) / np.sqrt(H + H)).astype('f')affine_b = np.zeros(V).astype('f')self.embed = TimeEmbedding(embed_W)self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True)self.affine = TimeAffine(affine_W, affine_b)self.params, self.grads = [], []for layer in (self.embed, self.lstm, self.affine):self.params += layer.paramsself.grads += layer.gradsself.cache = Nonedef forward(self, xs, h):N, T = xs.shapeN, H = h.shapeself.lstm.set_state(h)out = self.embed.forward(xs)hs = np.repeat(h, T, axis=0).reshape(N, T, H)out = np.concatenate((hs, out), axis=2)out = self.lstm.forward(out)out = np.concatenate((hs, out), axis=2)score = self.affine.forward(out)self.cache = Hreturn score

 咕哒,这里可以看到正确率达到了近100%,背答案也不是没有前途嘛。

感谢了偷窥大法和反转输入大法两位哥哥啦!

6.seq2seq 可以用在机器翻译、聊天机器人和自动图像描述等各种各样的应用中

现代前景:

聊天机器人:类似于现代婴儿版本的Chat GPT,牛!

相当于现代版的人脸识别等图像识别技术:六得嘞!

本章我们探讨了基于 RNN 的文本生成。实际上,我们只是稍微改动了一下上一章的基于 RNN 的语言模型,增加了文本生成的功能。在本章后半部分,我们研究了 seq2seq,并使之成功学习了简单的加法。seq2seq 模型拼接了编码器和解码器,是组合了两个 RNN 的简单结构。但是,尽管 seq2seq 简单,却具有巨大的潜力,可以用于各种各样的应用。

另外,本章还介绍了改进 seq2seq 的两个方案—— Reverse 和 Peeky。我们对这两个方案进行了实现和评价,并确认了它们的效果。下一章我们将继续改进 seq2seq,届时深度学习中最重要的技巧之一 Attention 将会出现。我们将说明 Attention 的机制,然后基于它实现更强大的 seq2seq。

这篇关于Deep Learning Part Seven基于RNN生成文本--24.5.2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956460

相关文章

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看