异常检测_线性相关方法

2024-05-02 19:58

本文主要是介绍异常检测_线性相关方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性模型内容

引言

真实数据集中不同维度的数据通常具有高度的相关性,这是因为不同的属性往往是由相同的基础过程以密切相关的方式产生的。在古典统计学中,这被称为——回归建模,一种参数化的相关性分析。   一类相关性分析试图通过其他变量预测单独的属性值,另一类方法用一些潜在变量来代表整个数据。前者的代表是 线性回归,后者一个典型的例子是 主成分分析。本文将会用这两种典型的线性相关分析方法进行异常检测。

需要明确的是,这里有两个重要的假设:

假设一:近似线性相关假设。线性相关假设是使用两种模型进行异常检测的重要理论基础。

假设二:子空间假设。子空间假设认为数据是镶嵌在低维子空间中的,线性方法的目的是找到合适的低维子空间使得异常点(o)在其中区别于正常点(n)。

基于这两点假设,在异常检测的第一阶段,为了确定特定的模型是否适合特定的数据集,对数据进行探索性和可视化分析是非常关键的。

代码演示
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

线性回归

在线性回归中,我们假设不同维度的变量具有一定的相关性,并可以通过一个相关系数矩阵进行衡量。因此对于特定的观测值,可以通过线性方程组来建模。在实际应用中,观测值的数量往往远大于数据的维度,导致线性方程组是一个超定方程,不能直接求解。因此需要通过优化的方法,最小化模型预测值与真实数据点的误差。

线性回归是统计学中一个重要的应用,这个重要的应用往往是指通过一系列自变量去预测一个特殊因变量的值。在这种情况下,异常值是根据其他自变量对因变量的影响来定义的,而自变量之间相互关系中的异常则不那么重要。这里的异常点检测主要用于数据降噪,避免异常点的出现对模型性能的影响,因而这里关注的兴趣点主要是正常值(n)。

而我们通常所说的异常检测中并不会对任何变量给与特殊对待,异常值的定义是基于基础数据点的整体分布,这里我们关注的兴趣点主要是异常值(o)。

广义的回归建模只是一种工具,这种工具既可以用来进行数据降噪也可以进行异常点检测。

基于自变量与因变量的线性回归

最小二乘法

为了简单起见,这里我们一元线性回归为例:

Y = ∑ i = 1 d a i ⋅ X i + a d + 1 Y=\sum_{i=1}^{d} a_{i} \cdot X_{i}+a_{d+1} Y=i=1daiXi+ad+1

变量Y为因变量,也就是我们要预测的值; X 1 . . . X d X_{1}...X_{d} X1...Xd为一系列因变量,也就是输入值。系数 a 1 . . . a d + 1 a_{1}...a_{d+1} a1...ad+1为要学习的参数。假设数据共包含 N N N个样本,第 j j j个样本包含的数据为 x j 1 . . . x j d x_{j1}...x_{jd} xj1...xjd y j y_{j} yj,带入式(1)如下式所示:

y j = ∑ i = 1 d a i ⋅ x j i + a d + 1 + ϵ j y_{j}=\sum_{i=1}^{d} a_{i} \cdot x_{j i}+a_{d+1}+\epsilon_{j} yj=i=1daixji+ad+1+ϵj

这里 ϵ j \epsilon_{j} ϵj为第 j j j个样本的误差。以 Y Y Y 代表 N × 1 N \times 1 N×1 的因变量矩阵 ( y 1 . . . y N ) T {(y_{1}...y_{N})}^{T} (y1...yN)T,即样本中的真实值;以 U U U代表 N × ( d + 1 ) N \times (d+1) N×(d

这篇关于异常检测_线性相关方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/955050

相关文章

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Java.lang.InterruptedException被中止异常的原因及解决方案

《Java.lang.InterruptedException被中止异常的原因及解决方案》Java.lang.InterruptedException是线程被中断时抛出的异常,用于协作停止执行,常见于... 目录报错问题报错原因解决方法Java.lang.InterruptedException 是 Jav

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方