LeetCode题目89:格雷码 递归、迭代及位操作在数组合并中的应用

2024-05-02 19:20

本文主要是介绍LeetCode题目89:格雷码 递归、迭代及位操作在数组合并中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
python源码解读
程序员必备的数学知识与应用
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

格雷码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异。

给定一个代表编码总位数的非负整数 n,打印其格雷码序列的顺序。格雷码序列必须以 0 开头。

输入格式
  • n:编码的位数。
输出格式
  • 返回格雷码序列的列表。

示例

示例 1
输入: n = 2
输出: [0, 1, 3, 2]
解释:
00 - 0
01 - 1
11 - 3
10 - 2

方法一:递归公式法

解题步骤
  1. 递归定义:利用格雷码的递归性质,G(n) = [0G(n-1), 1G(n-1)_reverse],即先加上 n-1 的格雷码序列,然后加上 n-1 的格雷码序列反转并在最高位加 1。
  2. 基本情况:当 n = 0 时,返回 [0]
完整的规范代码
def grayCode(n):"""根据递归公式生成格雷码:param n: int, 编码的位数:return: List[int], 格雷码序列"""if n == 0:return [0]# 递归生成前一位的格雷码previous = grayCode(n - 1)max_number = 1 << (n - 1)return previous + [max_number + i for i in reversed(previous)]# 示例调用
print(grayCode(2))  # 输出: [0, 1, 3, 2]
算法分析
  • 时间复杂度:(O(2^n)),生成长度为 (2^n) 的格雷码序列。
  • 空间复杂度:(O(2^n)),递归栈的深度和输出结果的长度。

方法二:二进制法

解题步骤
  1. 二进制转换:格雷码可以通过 G(i) = i ^ (i >> 1) 来从二进制转换得到,对于每个数 i,从 02^n - 1,计算对应的格雷码。
完整的规范代码
def grayCode(n):"""使用二进制转换法生成格雷码:param n: int, 编码的位数:return: List[int], 格雷码序列"""return [i ^ (i >> 1) for i in range(1 << n)]# 示例调用
print(grayCode(2))  # 输出: [0, 1, 3, 2]
算法分析
  • 时间复杂度:(O(2^n)),一次遍历生成格雷码序列。
  • 空间复杂度:(O(2^n)),存储格雷码序列。

方法三:迭代法

解题步骤
  1. 迭代构建:从 n=0 开始,迭代构建到 n,每次迭代利用上一次的结果。
  2. 反向追加:每次迭代在前一次结果的基础上,反向追加加上高位 1 的结果。
完整的规范代码
def grayCode(n):"""迭代法生成格雷码:param n: int, 编码的位数:return: List[int], 格雷码序列"""result = [0]for i in range(n):result += [x + (1 << i) for x in reversed(result)]return result# 示例调用
print(grayCode(2))  # 输出: [0, 1, 3, 2]
算法分析
  • 时间复杂度:(O(2^n)),每次迭代都会将结果列表长度翻倍。
  • 空间复杂度:(O(2^n)),存储格雷码序列。

方法四:镜像反射法

解题步骤
  1. 镜像原理:格雷码可以通过镜像反射的方式构建。首先生成长度为 1 的序列 [0, 1],每次迭代时,对当前列表进行镜像反射,左半部分的数字前加 0,右半部分的数字前加 1
  2. 递增迭代:从 1 位开始,通过递增方式逐步扩展到 n 位格雷码。
完整的规范代码
def grayCode(n):"""镜像反射法生成格雷码:param n: int, 编码的位数:return: List[int], 格雷码序列"""result = [0, 1]for i in range(1, n):result += [x + (1 << i) for x in reversed(result)]return result# 示例调用
print(grayCode(2))  # 输出: [0, 1, 3, 2]
算法分析
  • 时间复杂度:(O(2^n)),每次迭代列表长度翻倍,需要 (n) 次迭代来完成。
  • 空间复杂度:(O(2^n)),需要存储整个格雷码序列。

方法五:位操作优化

解题步骤
  1. 位操作:利用位操作的特性直接生成格雷码序列。格雷码的生成可以看作是一种位操作,通过对数值进行异或操作实现。
  2. 一次计算:通过从 02^n - 1 的循环,直接计算每个值的格雷码表示。
完整的规范代码
def grayCode(n):"""位操作优化生成格雷码:param n: int, 编码的位数:return: List[int], 格雷码序列"""return [(i >> 1) ^ i for i in range(1 << n)]# 示例调用
print(grayCode(2))  # 输出: [0, 1, 3, 2]
算法分析
  • 时间复杂度:(O(2^n)),对于给定的位数 n,生成所有可能的 2^n 个格雷码。
  • 空间复杂度:(O(2^n)),用于存储生成的格雷码序列。

不同算法的优劣势对比

特征方法一:递归公式法方法二:二进制法方法三:迭代法方法四:镜像反射法方法五:位操作优化
时间复杂度(O(2^n))(O(2^n))(O(2^n))(O(2^n))(O(2^n))
空间复杂度(O(2^n))(O(2^n))(O(2^n))(O(2^n))(O(2^n))
优势直观、递归简洁直接、无需递归易于理解和实现直观且易于理解极快且简洁
劣势深度递归可能导致栈溢出理解稍难需要多次复制和追加需要初始化较长列表位操作可能不直观

应用示例

格雷码的应用非常广泛,特别是在数字系统和通信领域,如:

  • 数字逻辑设计:在数字逻辑和硬件设计中,格雷码被用来最小化信号在数字电路中的切换错误。
  • 位置编码:在旋转编码器和其他传感器中,格雷码用于确保位置信息在读取过程中的准确性,减少错误。
  • 数据压缩:在某些形式的数据压缩中,格雷码有助于更有效地编码信息。

这篇关于LeetCode题目89:格雷码 递归、迭代及位操作在数组合并中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/954986

相关文章

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python中合并列表(list)的六种方法小结

《Python中合并列表(list)的六种方法小结》本文主要介绍了Python中合并列表(list)的六种方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录一、直接用 + 合并列表二、用 extend() js方法三、用 zip() 函数交叉合并四、用

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签