《从0到1学习Flink》—— Flink Data transformation(转换)

2024-05-02 08:32

本文主要是介绍《从0到1学习Flink》—— Flink Data transformation(转换),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在第一篇介绍 Flink 的文章 《《从0到1学习Flink》—— Apache Flink 介绍》 中就说过 Flink 程序的结构

Flink 应用程序结构就是如上图所示:

1、Source: 数据源,Flink 在流处理和批处理上的 source 大概有 4 类:基于本地集合的 source、基于文件的 source、基于网络套接字的 source、自定义的 source。自定义的 source 常见的有 Apache kafka、Amazon Kinesis Streams、RabbitMQ、Twitter Streaming API、Apache NiFi 等,当然你也可以定义自己的 source。

2、Transformation:数据转换的各种操作,有 Map / FlatMap / Filter / KeyBy / Reduce / Fold / Aggregations / Window / WindowAll / Union / Window join / Split / Select / Project 等,操作很多,可以将数据转换计算成你想要的数据。

3、Sink:接收器,Flink 将转换计算后的数据发送的地点 ,你可能需要存储下来,Flink 常见的 Sink 大概有如下几类:写入文件、打印出来、写入 socket 、自定义的 sink 。自定义的 sink 常见的有 Apache kafka、RabbitMQ、MySQL、ElasticSearch、Apache Cassandra、Hadoop FileSystem 等,同理你也可以定义自己的 sink。

在上四篇文章介绍了 Source 和 Sink:

1、《从0到1学习Flink》—— Data Source 介绍

2、《从0到1学习Flink》—— 如何自定义 Data Source ?

3、《从0到1学习Flink》—— Data Sink 介绍

4、《从0到1学习Flink》—— 如何自定义 Data Sink ?

那么这篇文章我们就来看下 Flink Data Transformation 吧,数据转换操作还是蛮多的,需要好好讲讲!

Transformation

Map

这是最简单的转换之一,其中输入是一个数据流,输出的也是一个数据流:

还是拿上一篇文章的案例来将数据进行 map 转换操作:

SingleOutputStreamOperator<Student> map = student.map(new MapFunction<Student, Student>() {@Overridepublic Student map(Student value) throws Exception {Student s1 = new Student();s1.id = value.id;s1.name = value.name;s1.password = value.password;s1.age = value.age + 5;return s1;}
});
map.print();

将每个人的年龄都增加 5 岁,其他不变。

FlatMap

FlatMap 采用一条记录并输出零个,一个或多个记录。

SingleOutputStreamOperator<Student> flatMap = student.flatMap(new FlatMapFunction<Student, Student>() {@Overridepublic void flatMap(Student value, Collector<Student> out) throws Exception {if (value.id % 2 == 0) {out.collect(value);}}
});
flatMap.print();

这里将 id 为偶数的聚集出来。

Filter

Filter 函数根据条件判断出结果。

SingleOutputStreamOperator<Student> filter = student.filter(new FilterFunction<Student>() {@Overridepublic boolean filter(Student value) throws Exception {if (value.id > 95) {return true;}return false;}
});
filter.print();

这里将 id 大于 95 的过滤出来,然后打印出来。

KeyBy

KeyBy 在逻辑上是基于 key 对流进行分区。在内部,它使用 hash 函数对流进行分区。它返回 KeyedDataStream 数据流。

KeyedStream<Student, Integer> keyBy = student.keyBy(new KeySelector<Student, Integer>() {@Overridepublic Integer getKey(Student value) throws Exception {return value.age;}
});
keyBy.print();

上面对 student 的 age 做 KeyBy 操作分区

Reduce

Reduce 返回单个的结果值,并且 reduce 操作每处理一个元素总是创建一个新值。常用的方法有 average, sum, min, max, count,使用 reduce 方法都可实现。

SingleOutputStreamOperator<Student> reduce = student.keyBy(new KeySelector<Student, Integer>() {@Overridepublic Integer getKey(Student value) throws Exception {return value.age;}
}).reduce(new ReduceFunction<Student>() {@Overridepublic Student reduce(Student value1, Student value2) throws Exception {Student student1 = new Student();student1.name = value1.name + value2.name;student1.id = (value1.id + value2.id) / 2;student1.password = value1.password + value2.password;student1.age = (value1.age + value2.age) / 2;return student1;}
});
reduce.print();

上面先将数据流进行 keyby 操作,因为执行 reduce 操作只能是 KeyedStream,然后将 student 对象的 age 做了一个求平均值的操作。

Fold

Fold 通过将最后一个文件夹流与当前记录组合来推出 KeyedStream。 它会发回数据流。

KeyedStream.fold("1", new FoldFunction<Integer, String>() {@Overridepublic String fold(String accumulator, Integer value) throws Exception {return accumulator + "=" + value;}
})
Aggregations

DataStream API 支持各种聚合,例如 min,max,sum 等。 这些函数可以应用于 KeyedStream 以获得 Aggregations 聚合。

KeyedStream.sum(0) 
KeyedStream.sum("key") 
KeyedStream.min(0) 
KeyedStream.min("key") 
KeyedStream.max(0) 
KeyedStream.max("key") 
KeyedStream.minBy(0) 
KeyedStream.minBy("key") 
KeyedStream.maxBy(0) 
KeyedStream.maxBy("key")

max 和 maxBy 之间的区别在于 max 返回流中的最大值,但 maxBy 返回具有最大值的键, min 和 minBy 同理。

Window

Window 函数允许按时间或其他条件对现有 KeyedStream 进行分组。 以下是以 10 秒的时间窗口聚合:

inputStream.keyBy(0).window(Time.seconds(10));

Flink 定义数据片段以便(可能)处理无限数据流。 这些切片称为窗口。 此切片有助于通过应用转换处理数据块。 要对流进行窗口化,我们需要分配一个可以进行分发的键和一个描述要对窗口化流执行哪些转换的函数

要将流切片到窗口,我们可以使用 Flink 自带的窗口分配器。 我们有选项,如 tumbling windows, sliding windows, global 和 session windows。 Flink 还允许您通过扩展 WindowAssginer 类来编写自定义窗口分配器。 这里先预留下篇文章来讲解这些不同的 windows 是如何工作的。

WindowAll

windowAll 函数允许对常规数据流进行分组。 通常,这是非并行数据转换,因为它在非分区数据流上运行。

与常规数据流功能类似,我们也有窗口数据流功能。 唯一的区别是它们处理窗口数据流。 所以窗口缩小就像 Reduce 函数一样,Window fold 就像 Fold 函数一样,并且还有聚合。

inputStream.keyBy(0).windowAll(Time.seconds(10));
Union

Union 函数将两个或多个数据流结合在一起。 这样就可以并行地组合数据流。 如果我们将一个流与自身组合,那么它会输出每个记录两次。

inputStream.union(inputStream1, inputStream2, ...);
Window join

我们可以通过一些 key 将同一个 window 的两个数据流 join 起来。

inputStream.join(inputStream1).where(0).equalTo(1).window(Time.seconds(5))     .apply (new JoinFunction () {...});

以上示例是在 5 秒的窗口中连接两个流,其中第一个流的第一个属性的连接条件等于另一个流的第二个属性。

Split

此功能根据条件将流拆分为两个或多个流。 当您获得混合流并且您可能希望单独处理每个数据流时,可以使用此方法。

SplitStream<Integer> split = inputStream.split(new OutputSelector<Integer>() {@Overridepublic Iterable<String> select(Integer value) {List<String> output = new ArrayList<String>(); if (value % 2 == 0) {output.add("even");}else {output.add("odd");}return output;}
});
Select

此功能允许您从拆分流中选择特定流。

SplitStream<Integer> split;
DataStream<Integer> even = split.select("even"); 
DataStream<Integer> odd = split.select("odd"); 
DataStream<Integer> all = split.select("even","odd");
Project

Project 函数允许您从事件流中选择属性子集,并仅将所选元素发送到下一个处理流。

DataStream<Tuple4<Integer, Double, String, String>> in = // [...] 
DataStream<Tuple2<String, String>> out = in.project(3,2);

上述函数从给定记录中选择属性号 2 和 3。 以下是示例输入和输出记录:

(1,10.0,A,B)=> (B,A)
(2,20.0,C,D)=> (D,C)

最后

本文主要介绍了 Flink Data 的常用转换方式:Map、FlatMap、Filter、KeyBy、Reduce、Fold、Aggregations、Window、WindowAll、Union、Window Join、Split、Select、Project 等。并用了点简单的 demo 介绍了如何使用,具体在项目中该如何将数据流转换成我们想要的格式,还需要根据实际情况对待。

关注我

转载请务必注明原创地址为:http://www.54tianzhisheng.cn/2018/11/04/Flink-Data-transformation/

另外我自己整理了些 Flink 的学习资料,目前已经全部放到微信公众号了。你可以加我的微信:zhisheng_tian,然后回复关键字:Flink 即可无条件获取到。

相关文章

1、《从0到1学习Flink》—— Apache Flink 介绍

2、《从0到1学习Flink》—— Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门

3、《从0到1学习Flink》—— Flink 配置文件详解

4、《从0到1学习Flink》—— Data Source 介绍

5、《从0到1学习Flink》—— 如何自定义 Data Source ?

6、《从0到1学习Flink》—— Data Sink 介绍

7、《从0到1学习Flink》—— 如何自定义 Data Sink ?

8、《从0到1学习Flink》—— Flink Data transformation(转换)

这篇关于《从0到1学习Flink》—— Flink Data transformation(转换)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/953827

相关文章

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

SpringBoot整合Apache Flink的详细指南

《SpringBoot整合ApacheFlink的详细指南》这篇文章主要为大家详细介绍了SpringBoot整合ApacheFlink的详细过程,涵盖环境准备,依赖配置,代码实现及运行步骤,感兴趣的... 目录1. 背景与目标2. 环境准备2.1 开发工具2.2 技术版本3. 创建 Spring Boot

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或