【深度学习实战(30)】训练框架之使用tensorboard记录loss

2024-05-02 06:36

本文主要是介绍【深度学习实战(30)】训练框架之使用tensorboard记录loss,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 安装Tensorboard库

pip install tensorflow 
pip install tensorboardx

二、LossHistory类实现过程

1. init构造函数
传入参数log保存路径,模型,模型输入尺寸

def __init__(self, log_dir, model, input_shape):

实例化SummaryWriter对象

self.writer     = SummaryWriter(self.log_dir)
  1. tensorboard.SummaryWriter.add_graph记录model
 try:dummy_input     = torch.randn(2, 3, input_shape[0], input_shape[1])self.writer.add_graph(model, dummy_input)except:pass

训练结束后查看保存的模型
在这里插入图片描述
在这里插入图片描述

  1. 记录loss
self.losses.append(loss)
self.val_loss.append(val_loss)
  1. txt文档记录loss
with open(os.path.join(self.log_dir, "epoch_loss.txt"), 'a') as f:f.write(str(loss))f.write("\n")
with open(os.path.join(self.log_dir, "epoch_val_loss.txt"), 'a') as f:f.write(str(val_loss))f.write("\n")

训练完后,查看epoch_loss.txtepoch_val_loss.txt
在这里插入图片描述
在这里插入图片描述

  1. tensorboard.SummaryWriter.add_scalar记录loss
self.writer.add_scalar('loss', loss, epoch)
self.writer.add_scalar('val_loss', val_loss, epoch)

训练结束后查看保存的loss
在这里插入图片描述
在这里插入图片描述

  1. pyplot绘制loss曲线图
def loss_plot(self):iters = range(len(self.losses))plt.figure()plt.plot(iters, self.losses, 'red', linewidth = 2, label='train loss')plt.plot(iters, self.val_loss, 'coral', linewidth = 2, label='val loss')try:if len(self.losses) < 25:num = 5else:num = 15plt.plot(iters, scipy.signal.savgol_filter(self.losses, num, 3), 'green', linestyle = '--', linewidth = 2, label='smooth train loss')plt.plot(iters, scipy.signal.savgol_filter(self.val_loss, num, 3), '#8B4513', linestyle = '--', linewidth = 2, label='smooth val loss')except:passplt.grid(True)plt.xlabel('Epoch')plt.ylabel('Loss')plt.legend(loc="upper right")plt.savefig(os.path.join(self.log_dir, "epoch_loss.png"))plt.cla()plt.close("all")

查看loss曲线图
在这里插入图片描述

三、LossHistory类完整代码

import os
import torch
from torch.utils.tensorboard import SummaryWriter
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import scipy.signalclass LossHistory():def __init__(self, log_dir, model, input_shape):self.log_dir    = log_dirself.losses     = []self.val_loss   = []os.makedirs(self.log_dir)self.writer     = SummaryWriter(self.log_dir)try:# --------- 1. tensorboard.SummaryWriter.add_graph记录model -------------#dummy_input     = torch.randn(2, 3, input_shape[0], input_shape[1],use_strict_trace=False)self.writer.add_graph(model, dummy_input)except:passdef append_loss(self, epoch, loss, val_loss):if not os.path.exists(self.log_dir):os.makedirs(self.log_dir)# --------- 2. 保存loss -------------#self.losses.append(loss)self.val_loss.append(val_loss)# --------- 3. txt记录loss -------------#with open(os.path.join(self.log_dir, "epoch_loss.txt"), 'a') as f:f.write(str(loss))f.write("\n")with open(os.path.join(self.log_dir, "epoch_val_loss.txt"), 'a') as f:f.write(str(val_loss))f.write("\n")# --------- 4. tensorboard.SummaryWriter.add_scalar记录loss -------------#self.writer.add_scalar('loss', loss, epoch)self.writer.add_scalar('val_loss', val_loss, epoch)self.loss_plot()# --------- 5. pyplot绘制loss曲线图 -------------#def loss_plot(self):iters = range(len(self.losses))plt.figure()plt.plot(iters, self.losses, 'red', linewidth = 2, label='train loss')plt.plot(iters, self.val_loss, 'coral', linewidth = 2, label='val loss')try:if len(self.losses) < 25:num = 5else:num = 15plt.plot(iters, scipy.signal.savgol_filter(self.losses, num, 3), 'green', linestyle = '--', linewidth = 2, label='smooth train loss')plt.plot(iters, scipy.signal.savgol_filter(self.val_loss, num, 3), '#8B4513', linestyle = '--', linewidth = 2, label='smooth val loss')except:passplt.grid(True)plt.xlabel('Epoch')plt.ylabel('Loss')plt.legend(loc="upper right")plt.savefig(os.path.join(self.log_dir, "epoch_loss.png"))plt.cla()plt.close("all")

四、LossHistory类使用框架

import LossHistory# 构造loss_history类
loss_history = LossHistory(log_dir, model, (input_W, input_H))# 训练一轮,将训练,验证损失传进loss_history类
loss_history.append_loss(epoch + 1, train_loss / epoch_step, val_loss / epoch_step_val)# 根据loss_history类中保存的loss来保存最佳模型
if len(loss_history_.val_loss) <= 1 or (val_loss / epoch_step_val) <= min(loss_history_.val_loss):best_ckpt = {'epoch': epoch, 'model': save_state_dict, 'optimizer': optimizer.state_dict(), 'loss':val_loss}torch.save(best_ckpt, os.path.join(save_dir, name_best_weights))# 训练一轮结束后,关闭Tensorboard.SummryWriter
loss_history.writer.close()

这篇关于【深度学习实战(30)】训练框架之使用tensorboard记录loss的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/953596

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是