MySQL中的UUID

2024-05-02 02:18
文章标签 mysql uuid database

本文主要是介绍MySQL中的UUID,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

避免主键冲突可以有多种方法,其中UUID比较方便而已。

使用UUID

  • 涉及分布式数据库间数据共享与同步的问题

以订单为例,假设有:中心A,中心B,中心C。。。服务器,各服务器均能独立产生订单。最终汇总到中心0服务器中。如果使用自增长主键就会在数据汇聚的时候产生冲突。

UUID可以很好地解决这个问题。

  • JAVA生成UUID

UUID.randomUUID().toString().replaceAll("-","");

UUID的性能问题

由于MySQL的InnoDB类型表在插入数据的时候进行了逐渐排序。因此对于随机UUID在数据量大的时候会出现性能下降的情况

性能损失如图:

这里写图片描述

数据来源MySQL InnoDB Primary Key Choise

提高MySQL中UUID查询性能的方法

很多文章中都提到了将UUID以binary形式存储可以显著提高性能。

如 storing-billions-uuid-fields-mysql-innodb

这篇博文就有详细性能对比:

  • UUID - CHAR(36)

INSERT PERFORMANCE
--------------------------------------------------------
total_rows           chunk_size           time_taken
100000               100000               1.87230491638
200000               100000               2.42642807961
300000               100000               3.65519285202
400000               100000               4.23701429367
500000               100000               4.88455510139
600000               100000               5.57620716095
700000               100000               7.50717425346
800000               100000               9.49350070953
900000               100000               10.1547751427
1000000              100000               12.0748021603
1100000              100000               12.277310133
1200000              100000               12.2819159031
1300000              100000               16.9854588509
1400000              100000               20.3873689175
1500000              100000               21.8642649651
1600000              100000               24.4224257469
1700000              100000               29.6857917309
1800000              100000               31.5416200161
1900000              100000               35.4671728611
2000000              100000               41.4726109505SELECT PERFORMANCE
--------------------------------------------------------
total_rows           chunk_size           time_taken
100000               10000                0.165283203125
200000               10000                0.163378000259
300000               10000                0.162928104401
400000               10000                0.164531946182
500000               10000                0.170125961304
600000               10000                0.167329072952
700000               10000                0.166491746902
800000               10000                0.174521684647
900000               10000                0.167996168137
1000000              10000                0.171768426895
1100000              10000                0.171753883362
1200000              10000                0.170397043228
1300000              10000                0.175933599472
1400000              10000                0.188637733459
1500000              10000                0.205511808395
1600000              10000                0.764106750488
1700000              10000                0.584647893906
1800000              10000                0.814380884171
1900000              10000                0.549372911453
2000000              10000                0.635137557983
  • UUID - BINARY(16)

INSERT PERFORMANCE
--------------------------------------------------------
total_rows           chunk_size           time_taken
100000               100000               2.35787940025
200000               100000               1.5819132328
300000               100000               2.00737380981
400000               100000               2.36268806458
500000               100000               1.95024132729
600000               100000               2.52386879921
700000               100000               2.46662926674
800000               100000               3.63739991188
900000               100000               3.62550187111
1000000              100000               4.08164095879
1100000              100000               4.74432897568
1200000              100000               6.74240970612
1300000              100000               6.22160053253
1400000              100000               8.04201221466
1500000              100000               6.05508232117
1600000              100000               6.95644521713
1700000              100000               5.36873197556
1800000              100000               7.14802789688
1900000              100000               7.14896821976
2000000              100000               9.12283611298SELECT PERFORMANCE
--------------------------------------------------------
total_rows           chunk_size           time_taken
100000               10000                0.0722301006317
200000               10000                0.0698809623718
300000               10000                0.0726082324982
400000               10000                0.0731747150421
500000               10000                0.0735011100769
600000               10000                0.0744516849518
700000               10000                0.0759541988373
800000               10000                0.0766224861145
900000               10000                0.0773425102234
1000000              10000                0.0773928165436
1100000              10000                0.0789988040924
1200000              10000                0.0786738395691
1300000              10000                0.077996969223
1400000              10000                0.0804636478424
1500000              10000                0.0809540748596
1600000              10000                0.0811409950256
1700000              10000                0.081680059433
1800000              10000                0.0814859867096
1900000              10000                0.0813221931458
2000000              10000                0.0838458538055

可以看出性能有了极大的提升。

JPA中的具体表实体设置

参考文章Hibernate和UUID标示符

该方法缺陷在于:主键数据在数据库管理工具中显示为乱码。

@Id@Column(columnDefinition = "BINARY(16)")private UUID uuid;

这篇关于MySQL中的UUID的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/953196

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

mysql8.0.43使用InnoDB Cluster配置主从复制

《mysql8.0.43使用InnoDBCluster配置主从复制》本文主要介绍了mysql8.0.43使用InnoDBCluster配置主从复制,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录1、配置Hosts解析(所有服务器都要执行)2、安装mysql shell(所有服务器都要执行)3、

k8s中实现mysql主备过程详解

《k8s中实现mysql主备过程详解》文章讲解了在K8s中使用StatefulSet部署MySQL主备架构,包含NFS安装、storageClass配置、MySQL部署及同步检查步骤,确保主备数据一致... 目录一、k8s中实现mysql主备1.1 环境信息1.2 部署nfs-provisioner1.2.

MySQL中VARCHAR和TEXT的区别小结

《MySQL中VARCHAR和TEXT的区别小结》MySQL中VARCHAR和TEXT用于存储字符串,VARCHAR可变长度存储在行内,适合短文本;TEXT存储在溢出页,适合大文本,下面就来具体的了解... 目录一、VARCHAR 和 TEXT 基本介绍1. VARCHAR2. TEXT二、VARCHAR

MySQL中C接口的实现

《MySQL中C接口的实现》本节内容介绍使用C/C++访问数据库,包括对数据库的增删查改操作,主要是学习一些接口的调用,具有一定的参考价值,感兴趣的可以了解一下... 目录准备mysql库使用mysql库编译文件官方API文档对象的创建和关闭链接数据库下达sql指令select语句前言:本节内容介绍使用C/

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

MySQL之搜索引擎使用解读

《MySQL之搜索引擎使用解读》MySQL存储引擎是数据存储和管理的核心组件,不同引擎(如InnoDB、MyISAM)采用不同机制,InnoDB支持事务与行锁,适合高并发场景;MyISAM不支持事务,... 目录mysql的存储引擎是什么MySQL存储引擎的功能MySQL的存储引擎的分类查看存储引擎1.命令

一文详解MySQL索引(六张图彻底搞懂)

《一文详解MySQL索引(六张图彻底搞懂)》MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度,:本文主要介绍MySQL索引的相关资料,文中通过代码介绍的... 目录一、什么是索引?为什么需要索引?二、索引该用哪种数据结构?1. 哈希表2. 跳表3. 二叉排序树4.

MySQL批量替换数据库字符集的实用方法(附详细代码)

《MySQL批量替换数据库字符集的实用方法(附详细代码)》当需要修改数据库编码和字符集时,通常需要对其下属的所有表及表中所有字段进行修改,下面:本文主要介绍MySQL批量替换数据库字符集的实用方法... 目录前言为什么要批量修改字符集?整体脚本脚本逻辑解析1. 设置目标参数2. 生成修改表默认字符集的语句3