政安晨:【Keras机器学习示例演绎】(二十七)—— 利用 NNCLR 进行自我监督对比学习

本文主要是介绍政安晨:【Keras机器学习示例演绎】(二十七)—— 利用 NNCLR 进行自我监督对比学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简介

自我监督学习

对比学习

NNCLR

设置

超参数

加载数据集

增强

准备扩增模块

编码器结构

用于对比预训练的 NNCLR 模型

预训练 NNCLR


政安晨的个人主页:政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:计算机视觉自监督学习方法 NNCLR 的实现。

简介


自我监督学习


自我监督表示学习旨在从原始数据中获取稳健的样本表示,而无需昂贵的标签或注释。这一领域的早期方法侧重于定义预训练任务,这些任务涉及在一个有大量弱监督标签的领域中的代用任务。为解决此类任务而训练的编码器有望学习到一般特征,这些特征可能对其他需要昂贵注释的下游任务(如图像分类)有用。

对比学习


自监督学习技术的一大类别是使用对比损失的技术,这些技术已被广泛应用于图像相似性、降维(DrLIM)和人脸验证/识别等计算机视觉应用中。这些方法学习一个潜在空间,将正样本聚类在一起,同时将负样本推开。

NNCLR


在本示例中,我们实现了论文 With a Little Help from My Friends 中提出的 NNCLR:谷歌研究院和 DeepMind 共同发表的论文《视觉表征的最近邻对比学习》(With Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations)中提出的 NNCLR。

NNCLR 学习的是自我监督表征,它超越了单一实例的正向性,可以学习到更好的特征,这些特征不受不同视角、变形甚至类内变化的影响。基于聚类的方法提供了一种超越单一实例正向性的好方法,但假设整个聚类都是正向性,可能会由于早期过度泛化而影响性能。取而代之的是,NNCLR 将所学表示空间中的近邻作为正例。此外,NNCLR 还提高了 SimCLR(Keras 示例)等现有对比学习方法的性能,并减少了自监督方法对数据增强策略的依赖。

下面是论文作者提供的一个很好的可视化演示,展示了 NNCLR 如何以 SimCLR 的理念为基础:

我们可以看到,SimCLR 使用同一图像的两个视图作为正对。这两个视图是使用随机数据增强生成的,通过编码器得到正向嵌入对,我们最终使用了两个增强。而 NNCLR 则保留了一个代表完整数据分布的嵌入支持集,并使用最近邻方法形成正对。在训练过程中,支持集被用作内存,类似于 MoCo 中的队列(即先进先出)。

此示例需要使用 tensorflow_datasets,可通过此命令安装:

!pip install tensorflow-datasets

设置

import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_datasets as tfds
import osos.environ["KERAS_BACKEND"] = "tensorflow"
import keras
import keras_cv
from keras import ops
from keras import layers

超参数


如原始论文所示,更大的队列规模很可能意味着更好的性能,但会带来巨大的计算开销。作者指出,NNCLR 的最佳结果是在队列大小为 98,304 时(这是他们实验过的最大队列大小)取得的。我们在这里使用 10,000 来展示一个工作示例。

AUTOTUNE = tf.data.AUTOTUNE
shuffle_buffer = 5000
# The below two values are taken from https://www.tensorflow.org/datasets/catalog/stl10
labelled_train_images = 5000
unlabelled_images = 100000temperature = 0.1
queue_size = 10000
contrastive_augmenter = {"brightness": 0.5,"name": "contrastive_augmenter","scale": (0.2, 1.0),
}
classification_augmenter = {"brightness": 0.2,"name": "classification_augmenter","scale": (0.5, 1.0),
}
input_shape = (96, 96, 3)
width = 128
num_epochs = 5  # Use 25 for better results
steps_per_epoch = 50  # Use 200 for better results

加载数据集


我们从 TensorFlow 数据集加载 STL-10 数据集,这是一个用于开发无监督特征学习、深度学习和自学算法的图像识别数据集。它受到 CIFAR-10 数据集的启发,并做了一些修改。

dataset_name = "stl10"def prepare_dataset():unlabeled_batch_size = unlabelled_images // steps_per_epochlabeled_batch_size = labelled_train_images // steps_per_epochbatch_size = unlabeled_batch_size + labeled_batch_sizeunlabeled_train_dataset = (tfds.load(dataset_name, split="unlabelled", as_supervised=True, shuffle_files=True).shuffle(buffer_size=shuffle_buffer).batch(unlabeled_batch_size, drop_remainder=True))labeled_train_dataset = (tfds.load(dataset_name, split="train", as_supervised=True, shuffle_files=True).shuffle(buffer_size=shuffle_buffer).batch(labeled_batch_size, drop_remainder=True))test_dataset = (tfds.load(dataset_name, split="test", as_supervised=True).batch(batch_size).prefetch(buffer_size=AUTOTUNE))train_dataset = tf.data.Dataset.zip((unlabeled_train_dataset, labeled_train_dataset)).prefetch(buffer_size=AUTOTUNE)return batch_size, train_dataset, labeled_train_dataset, test_datasetbatch_size, train_dataset, labeled_train_dataset, test_dataset = prepare_dataset()

增强


其他自监督技术,如 SimCLR、BYOL、SwAV 等,在很大程度上依赖于精心设计的数据扩增管道,以获得最佳性能。然而,NNCLR 对复杂扩增的依赖性较低,因为近邻数据已经提供了丰富的样本变化。扩增管道通常包括以下几种常见技术:

随机调整作物大小
多种颜色变形
高斯模糊

由于 NNCLR 对复杂增强的依赖性较低,我们将只使用随机裁剪和随机亮度来增强输入图像。

准备扩增模块

def augmenter(brightness, name, scale):return keras.Sequential([layers.Input(shape=input_shape),layers.Rescaling(1 / 255),layers.RandomFlip("horizontal"),keras_cv.layers.RandomCropAndResize(target_size=(input_shape[0], input_shape[1]),crop_area_factor=scale,aspect_ratio_factor=(3 / 4, 4 / 3),),keras_cv.layers.RandomBrightness(factor=brightness, value_range=(0.0, 1.0)),],name=name,)

编码器结构


使用 ResNet-50 作为编码器结构是文献中的标准结构。在原论文中,作者使用 ResNet-50 作为编码器架构,并对 ResNet-50 的输出进行空间平均。不过,请记住,功能更强大的模型不仅会增加训练时间,还会需要更多内存,并限制您可以使用的最大批次规模。在本例中,我们只使用四个卷积层。

def encoder():return keras.Sequential([layers.Input(shape=input_shape),layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"),layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"),layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"),layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"),layers.Flatten(),layers.Dense(width, activation="relu"),],name="encoder",)

用于对比预训练的 NNCLR 模型


我们在无标签图像上训练一个有对比损失的编码器。编码器顶部安装了一个非线性投影头,因为它能提高编码器的表征质量。

class NNCLR(keras.Model):def __init__(self, temperature, queue_size,):super().__init__()self.probe_accuracy = keras.metrics.SparseCategoricalAccuracy()self.correlation_accuracy = keras.metrics.SparseCategoricalAccuracy()self.contrastive_accuracy = keras.metrics.SparseCategoricalAccuracy()self.probe_loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True)self.contrastive_augmenter = augmenter(**contrastive_augmenter)self.classification_augmenter = augmenter(**classification_augmenter)self.encoder = encoder()self.projection_head = keras.Sequential([layers.Input(shape=(width,)),layers.Dense(width, activation="relu"),layers.Dense(width),],name="projection_head",)self.linear_probe = keras.Sequential([layers.Input(shape=(width,)), layers.Dense(10)], name="linear_probe")self.temperature = temperaturefeature_dimensions = self.encoder.output_shape[1]self.feature_queue = keras.Variable(keras.utils.normalize(keras.random.normal(shape=(queue_size, feature_dimensions)),axis=1,order=2,),trainable=False,)def compile(self, contrastive_optimizer, probe_optimizer, **kwargs):super().compile(**kwargs)self.contrastive_optimizer = contrastive_optimizerself.probe_optimizer = probe_optimizerdef nearest_neighbour(self, projections):support_similarities = ops.matmul(projections, ops.transpose(self.feature_queue))nn_projections = ops.take(self.feature_queue, ops.argmax(support_similarities, axis=1), axis=0)return projections + ops.stop_gradient(nn_projections - projections)def update_contrastive_accuracy(self, features_1, features_2):features_1 = keras.utils.normalize(features_1, axis=1, order=2)features_2 = keras.utils.normalize(features_2, axis=1, order=2)similarities = ops.matmul(features_1, ops.transpose(features_2))batch_size = ops.shape(features_1)[0]contrastive_labels = ops.arange(batch_size)self.contrastive_accuracy.update_state(ops.concatenate([contrastive_labels, contrastive_labels], axis=0),ops.concatenate([similarities, ops.transpose(similarities)], axis=0),)def update_correlation_accuracy(self, features_1, features_2):features_1 = (features_1 - ops.mean(features_1, axis=0)) / ops.std(features_1, axis=0)features_2 = (features_2 - ops.mean(features_2, axis=0)) / ops.std(features_2, axis=0)batch_size = ops.shape(features_1)[0]cross_correlation = (ops.matmul(ops.transpose(features_1), features_2) / batch_size)feature_dim = ops.shape(features_1)[1]correlation_labels = ops.arange(feature_dim)self.correlation_accuracy.update_state(ops.concatenate([correlation_labels, correlation_labels], axis=0),ops.concatenate([cross_correlation, ops.transpose(cross_correlation)], axis=0),)def contrastive_loss(self, projections_1, projections_2):projections_1 = keras.utils.normalize(projections_1, axis=1, order=2)projections_2 = keras.utils.normalize(projections_2, axis=1, order=2)similarities_1_2_1 = (ops.matmul(self.nearest_neighbour(projections_1), ops.transpose(projections_2))/ self.temperature)similarities_1_2_2 = (ops.matmul(projections_2, ops.transpose(self.nearest_neighbour(projections_1)))/ self.temperature)similarities_2_1_1 = (ops.matmul(self.nearest_neighbour(projections_2), ops.transpose(projections_1))/ self.temperature)similarities_2_1_2 = (ops.matmul(projections_1, ops.transpose(self.nearest_neighbour(projections_2)))/ self.temperature)batch_size = ops.shape(projections_1)[0]contrastive_labels = ops.arange(batch_size)loss = keras.losses.sparse_categorical_crossentropy(ops.concatenate([contrastive_labels,contrastive_labels,contrastive_labels,contrastive_labels,],axis=0,),ops.concatenate([similarities_1_2_1,similarities_1_2_2,similarities_2_1_1,similarities_2_1_2,],axis=0,),from_logits=True,)self.feature_queue.assign(ops.concatenate([projections_1, self.feature_queue[:-batch_size]], axis=0))return lossdef train_step(self, data):(unlabeled_images, _), (labeled_images, labels) = dataimages = ops.concatenate((unlabeled_images, labeled_images), axis=0)augmented_images_1 = self.contrastive_augmenter(images)augmented_images_2 = self.contrastive_augmenter(images)with tf.GradientTape() as tape:features_1 = self.encoder(augmented_images_1)features_2 = self.encoder(augmented_images_2)projections_1 = self.projection_head(features_1)projections_2 = self.projection_head(features_2)contrastive_loss = self.contrastive_loss(projections_1, projections_2)gradients = tape.gradient(contrastive_loss,self.encoder.trainable_weights + self.projection_head.trainable_weights,)self.contrastive_optimizer.apply_gradients(zip(gradients,self.encoder.trainable_weights + self.projection_head.trainable_weights,))self.update_contrastive_accuracy(features_1, features_2)self.update_correlation_accuracy(features_1, features_2)preprocessed_images = self.classification_augmenter(labeled_images)with tf.GradientTape() as tape:features = self.encoder(preprocessed_images)class_logits = self.linear_probe(features)probe_loss = self.probe_loss(labels, class_logits)gradients = tape.gradient(probe_loss, self.linear_probe.trainable_weights)self.probe_optimizer.apply_gradients(zip(gradients, self.linear_probe.trainable_weights))self.probe_accuracy.update_state(labels, class_logits)return {"c_loss": contrastive_loss,"c_acc": self.contrastive_accuracy.result(),"r_acc": self.correlation_accuracy.result(),"p_loss": probe_loss,"p_acc": self.probe_accuracy.result(),}def test_step(self, data):labeled_images, labels = datapreprocessed_images = self.classification_augmenter(labeled_images, training=False)features = self.encoder(preprocessed_images, training=False)class_logits = self.linear_probe(features, training=False)probe_loss = self.probe_loss(labels, class_logits)self.probe_accuracy.update_state(labels, class_logits)return {"p_loss": probe_loss, "p_acc": self.probe_accuracy.result()}

预训练 NNCLR


我们按照论文中的建议,使用 0.1 的温度和前面解释过的 10,000 的队列大小来训练网络。我们使用 Adam 作为对比和探测优化器。在本例中,我们只对模型进行了 30 个历元的训练,但为了获得更好的性能,我们应该对模型进行更多历元的训练。

以下两个指标可用于监控预训练性能,我们也会记录这些指标(摘自 Keras 示例):

对比准确度:自监督指标,即图像表示与其不同增强版本的图像表示更相似的情况比与当前批次中任何其他图像的表示更相似的情况的比率。即使在没有标注示例的情况下,自监督指标也可用于超参数调整。


线性探测准确率:线性探测是评估自监督分类器的常用指标。它的计算方法是在编码器特征的基础上训练逻辑回归分类器的准确率。在我们的例子中,是通过在冻结编码器上训练单个密集层来实现的。需要注意的是,与在预训练阶段后训练分类器的传统方法不同,在本例中,我们在预训练阶段就对分类器进行了训练。这可能会略微降低分类器的准确性,但这样我们就可以在训练过程中监控其值,从而有助于实验和调试。

model = NNCLR(temperature=temperature, queue_size=queue_size)
model.compile(contrastive_optimizer=keras.optimizers.Adam(),probe_optimizer=keras.optimizers.Adam(),jit_compile=False,
)
pretrain_history = model.fit(train_dataset, epochs=num_epochs, validation_data=test_dataset
)

正如 SEER、SimCLR、SwAV 等以前的方法所显示的那样,当你只能获得非常有限的标注训练数据,但却能设法建立大量未标注数据的语料库时,自我监督学习就特别有用。


这篇关于政安晨:【Keras机器学习示例演绎】(二十七)—— 利用 NNCLR 进行自我监督对比学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/953132

相关文章

maven中的maven-antrun-plugin插件示例详解

《maven中的maven-antrun-plugin插件示例详解》maven-antrun-plugin是Maven生态中一个强大的工具,尤其适合需要复用Ant脚本或实现复杂构建逻辑的场景... 目录1. 核心功能2. 典型使用场景3. 配置示例4. 关键配置项5. 优缺点分析6. 最佳实践7. 常见问题

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

SpringBoot如何对密码等敏感信息进行脱敏处理

《SpringBoot如何对密码等敏感信息进行脱敏处理》这篇文章主要为大家详细介绍了SpringBoot对密码等敏感信息进行脱敏处理的几个常用方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录​1. 配置文件敏感信息脱敏​​2. 日志脱敏​​3. API响应脱敏​​4. 其他注意事项​​总结