政安晨:【Keras机器学习示例演绎】(二十七)—— 利用 NNCLR 进行自我监督对比学习

本文主要是介绍政安晨:【Keras机器学习示例演绎】(二十七)—— 利用 NNCLR 进行自我监督对比学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简介

自我监督学习

对比学习

NNCLR

设置

超参数

加载数据集

增强

准备扩增模块

编码器结构

用于对比预训练的 NNCLR 模型

预训练 NNCLR


政安晨的个人主页:政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:计算机视觉自监督学习方法 NNCLR 的实现。

简介


自我监督学习


自我监督表示学习旨在从原始数据中获取稳健的样本表示,而无需昂贵的标签或注释。这一领域的早期方法侧重于定义预训练任务,这些任务涉及在一个有大量弱监督标签的领域中的代用任务。为解决此类任务而训练的编码器有望学习到一般特征,这些特征可能对其他需要昂贵注释的下游任务(如图像分类)有用。

对比学习


自监督学习技术的一大类别是使用对比损失的技术,这些技术已被广泛应用于图像相似性、降维(DrLIM)和人脸验证/识别等计算机视觉应用中。这些方法学习一个潜在空间,将正样本聚类在一起,同时将负样本推开。

NNCLR


在本示例中,我们实现了论文 With a Little Help from My Friends 中提出的 NNCLR:谷歌研究院和 DeepMind 共同发表的论文《视觉表征的最近邻对比学习》(With Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations)中提出的 NNCLR。

NNCLR 学习的是自我监督表征,它超越了单一实例的正向性,可以学习到更好的特征,这些特征不受不同视角、变形甚至类内变化的影响。基于聚类的方法提供了一种超越单一实例正向性的好方法,但假设整个聚类都是正向性,可能会由于早期过度泛化而影响性能。取而代之的是,NNCLR 将所学表示空间中的近邻作为正例。此外,NNCLR 还提高了 SimCLR(Keras 示例)等现有对比学习方法的性能,并减少了自监督方法对数据增强策略的依赖。

下面是论文作者提供的一个很好的可视化演示,展示了 NNCLR 如何以 SimCLR 的理念为基础:

我们可以看到,SimCLR 使用同一图像的两个视图作为正对。这两个视图是使用随机数据增强生成的,通过编码器得到正向嵌入对,我们最终使用了两个增强。而 NNCLR 则保留了一个代表完整数据分布的嵌入支持集,并使用最近邻方法形成正对。在训练过程中,支持集被用作内存,类似于 MoCo 中的队列(即先进先出)。

此示例需要使用 tensorflow_datasets,可通过此命令安装:

!pip install tensorflow-datasets

设置

import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_datasets as tfds
import osos.environ["KERAS_BACKEND"] = "tensorflow"
import keras
import keras_cv
from keras import ops
from keras import layers

超参数


如原始论文所示,更大的队列规模很可能意味着更好的性能,但会带来巨大的计算开销。作者指出,NNCLR 的最佳结果是在队列大小为 98,304 时(这是他们实验过的最大队列大小)取得的。我们在这里使用 10,000 来展示一个工作示例。

AUTOTUNE = tf.data.AUTOTUNE
shuffle_buffer = 5000
# The below two values are taken from https://www.tensorflow.org/datasets/catalog/stl10
labelled_train_images = 5000
unlabelled_images = 100000temperature = 0.1
queue_size = 10000
contrastive_augmenter = {"brightness": 0.5,"name": "contrastive_augmenter","scale": (0.2, 1.0),
}
classification_augmenter = {"brightness": 0.2,"name": "classification_augmenter","scale": (0.5, 1.0),
}
input_shape = (96, 96, 3)
width = 128
num_epochs = 5  # Use 25 for better results
steps_per_epoch = 50  # Use 200 for better results

加载数据集


我们从 TensorFlow 数据集加载 STL-10 数据集,这是一个用于开发无监督特征学习、深度学习和自学算法的图像识别数据集。它受到 CIFAR-10 数据集的启发,并做了一些修改。

dataset_name = "stl10"def prepare_dataset():unlabeled_batch_size = unlabelled_images // steps_per_epochlabeled_batch_size = labelled_train_images // steps_per_epochbatch_size = unlabeled_batch_size + labeled_batch_sizeunlabeled_train_dataset = (tfds.load(dataset_name, split="unlabelled", as_supervised=True, shuffle_files=True).shuffle(buffer_size=shuffle_buffer).batch(unlabeled_batch_size, drop_remainder=True))labeled_train_dataset = (tfds.load(dataset_name, split="train", as_supervised=True, shuffle_files=True).shuffle(buffer_size=shuffle_buffer).batch(labeled_batch_size, drop_remainder=True))test_dataset = (tfds.load(dataset_name, split="test", as_supervised=True).batch(batch_size).prefetch(buffer_size=AUTOTUNE))train_dataset = tf.data.Dataset.zip((unlabeled_train_dataset, labeled_train_dataset)).prefetch(buffer_size=AUTOTUNE)return batch_size, train_dataset, labeled_train_dataset, test_datasetbatch_size, train_dataset, labeled_train_dataset, test_dataset = prepare_dataset()

增强


其他自监督技术,如 SimCLR、BYOL、SwAV 等,在很大程度上依赖于精心设计的数据扩增管道,以获得最佳性能。然而,NNCLR 对复杂扩增的依赖性较低,因为近邻数据已经提供了丰富的样本变化。扩增管道通常包括以下几种常见技术:

随机调整作物大小
多种颜色变形
高斯模糊

由于 NNCLR 对复杂增强的依赖性较低,我们将只使用随机裁剪和随机亮度来增强输入图像。

准备扩增模块

def augmenter(brightness, name, scale):return keras.Sequential([layers.Input(shape=input_shape),layers.Rescaling(1 / 255),layers.RandomFlip("horizontal"),keras_cv.layers.RandomCropAndResize(target_size=(input_shape[0], input_shape[1]),crop_area_factor=scale,aspect_ratio_factor=(3 / 4, 4 / 3),),keras_cv.layers.RandomBrightness(factor=brightness, value_range=(0.0, 1.0)),],name=name,)

编码器结构


使用 ResNet-50 作为编码器结构是文献中的标准结构。在原论文中,作者使用 ResNet-50 作为编码器架构,并对 ResNet-50 的输出进行空间平均。不过,请记住,功能更强大的模型不仅会增加训练时间,还会需要更多内存,并限制您可以使用的最大批次规模。在本例中,我们只使用四个卷积层。

def encoder():return keras.Sequential([layers.Input(shape=input_shape),layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"),layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"),layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"),layers.Conv2D(width, kernel_size=3, strides=2, activation="relu"),layers.Flatten(),layers.Dense(width, activation="relu"),],name="encoder",)

用于对比预训练的 NNCLR 模型


我们在无标签图像上训练一个有对比损失的编码器。编码器顶部安装了一个非线性投影头,因为它能提高编码器的表征质量。

class NNCLR(keras.Model):def __init__(self, temperature, queue_size,):super().__init__()self.probe_accuracy = keras.metrics.SparseCategoricalAccuracy()self.correlation_accuracy = keras.metrics.SparseCategoricalAccuracy()self.contrastive_accuracy = keras.metrics.SparseCategoricalAccuracy()self.probe_loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True)self.contrastive_augmenter = augmenter(**contrastive_augmenter)self.classification_augmenter = augmenter(**classification_augmenter)self.encoder = encoder()self.projection_head = keras.Sequential([layers.Input(shape=(width,)),layers.Dense(width, activation="relu"),layers.Dense(width),],name="projection_head",)self.linear_probe = keras.Sequential([layers.Input(shape=(width,)), layers.Dense(10)], name="linear_probe")self.temperature = temperaturefeature_dimensions = self.encoder.output_shape[1]self.feature_queue = keras.Variable(keras.utils.normalize(keras.random.normal(shape=(queue_size, feature_dimensions)),axis=1,order=2,),trainable=False,)def compile(self, contrastive_optimizer, probe_optimizer, **kwargs):super().compile(**kwargs)self.contrastive_optimizer = contrastive_optimizerself.probe_optimizer = probe_optimizerdef nearest_neighbour(self, projections):support_similarities = ops.matmul(projections, ops.transpose(self.feature_queue))nn_projections = ops.take(self.feature_queue, ops.argmax(support_similarities, axis=1), axis=0)return projections + ops.stop_gradient(nn_projections - projections)def update_contrastive_accuracy(self, features_1, features_2):features_1 = keras.utils.normalize(features_1, axis=1, order=2)features_2 = keras.utils.normalize(features_2, axis=1, order=2)similarities = ops.matmul(features_1, ops.transpose(features_2))batch_size = ops.shape(features_1)[0]contrastive_labels = ops.arange(batch_size)self.contrastive_accuracy.update_state(ops.concatenate([contrastive_labels, contrastive_labels], axis=0),ops.concatenate([similarities, ops.transpose(similarities)], axis=0),)def update_correlation_accuracy(self, features_1, features_2):features_1 = (features_1 - ops.mean(features_1, axis=0)) / ops.std(features_1, axis=0)features_2 = (features_2 - ops.mean(features_2, axis=0)) / ops.std(features_2, axis=0)batch_size = ops.shape(features_1)[0]cross_correlation = (ops.matmul(ops.transpose(features_1), features_2) / batch_size)feature_dim = ops.shape(features_1)[1]correlation_labels = ops.arange(feature_dim)self.correlation_accuracy.update_state(ops.concatenate([correlation_labels, correlation_labels], axis=0),ops.concatenate([cross_correlation, ops.transpose(cross_correlation)], axis=0),)def contrastive_loss(self, projections_1, projections_2):projections_1 = keras.utils.normalize(projections_1, axis=1, order=2)projections_2 = keras.utils.normalize(projections_2, axis=1, order=2)similarities_1_2_1 = (ops.matmul(self.nearest_neighbour(projections_1), ops.transpose(projections_2))/ self.temperature)similarities_1_2_2 = (ops.matmul(projections_2, ops.transpose(self.nearest_neighbour(projections_1)))/ self.temperature)similarities_2_1_1 = (ops.matmul(self.nearest_neighbour(projections_2), ops.transpose(projections_1))/ self.temperature)similarities_2_1_2 = (ops.matmul(projections_1, ops.transpose(self.nearest_neighbour(projections_2)))/ self.temperature)batch_size = ops.shape(projections_1)[0]contrastive_labels = ops.arange(batch_size)loss = keras.losses.sparse_categorical_crossentropy(ops.concatenate([contrastive_labels,contrastive_labels,contrastive_labels,contrastive_labels,],axis=0,),ops.concatenate([similarities_1_2_1,similarities_1_2_2,similarities_2_1_1,similarities_2_1_2,],axis=0,),from_logits=True,)self.feature_queue.assign(ops.concatenate([projections_1, self.feature_queue[:-batch_size]], axis=0))return lossdef train_step(self, data):(unlabeled_images, _), (labeled_images, labels) = dataimages = ops.concatenate((unlabeled_images, labeled_images), axis=0)augmented_images_1 = self.contrastive_augmenter(images)augmented_images_2 = self.contrastive_augmenter(images)with tf.GradientTape() as tape:features_1 = self.encoder(augmented_images_1)features_2 = self.encoder(augmented_images_2)projections_1 = self.projection_head(features_1)projections_2 = self.projection_head(features_2)contrastive_loss = self.contrastive_loss(projections_1, projections_2)gradients = tape.gradient(contrastive_loss,self.encoder.trainable_weights + self.projection_head.trainable_weights,)self.contrastive_optimizer.apply_gradients(zip(gradients,self.encoder.trainable_weights + self.projection_head.trainable_weights,))self.update_contrastive_accuracy(features_1, features_2)self.update_correlation_accuracy(features_1, features_2)preprocessed_images = self.classification_augmenter(labeled_images)with tf.GradientTape() as tape:features = self.encoder(preprocessed_images)class_logits = self.linear_probe(features)probe_loss = self.probe_loss(labels, class_logits)gradients = tape.gradient(probe_loss, self.linear_probe.trainable_weights)self.probe_optimizer.apply_gradients(zip(gradients, self.linear_probe.trainable_weights))self.probe_accuracy.update_state(labels, class_logits)return {"c_loss": contrastive_loss,"c_acc": self.contrastive_accuracy.result(),"r_acc": self.correlation_accuracy.result(),"p_loss": probe_loss,"p_acc": self.probe_accuracy.result(),}def test_step(self, data):labeled_images, labels = datapreprocessed_images = self.classification_augmenter(labeled_images, training=False)features = self.encoder(preprocessed_images, training=False)class_logits = self.linear_probe(features, training=False)probe_loss = self.probe_loss(labels, class_logits)self.probe_accuracy.update_state(labels, class_logits)return {"p_loss": probe_loss, "p_acc": self.probe_accuracy.result()}

预训练 NNCLR


我们按照论文中的建议,使用 0.1 的温度和前面解释过的 10,000 的队列大小来训练网络。我们使用 Adam 作为对比和探测优化器。在本例中,我们只对模型进行了 30 个历元的训练,但为了获得更好的性能,我们应该对模型进行更多历元的训练。

以下两个指标可用于监控预训练性能,我们也会记录这些指标(摘自 Keras 示例):

对比准确度:自监督指标,即图像表示与其不同增强版本的图像表示更相似的情况比与当前批次中任何其他图像的表示更相似的情况的比率。即使在没有标注示例的情况下,自监督指标也可用于超参数调整。


线性探测准确率:线性探测是评估自监督分类器的常用指标。它的计算方法是在编码器特征的基础上训练逻辑回归分类器的准确率。在我们的例子中,是通过在冻结编码器上训练单个密集层来实现的。需要注意的是,与在预训练阶段后训练分类器的传统方法不同,在本例中,我们在预训练阶段就对分类器进行了训练。这可能会略微降低分类器的准确性,但这样我们就可以在训练过程中监控其值,从而有助于实验和调试。

model = NNCLR(temperature=temperature, queue_size=queue_size)
model.compile(contrastive_optimizer=keras.optimizers.Adam(),probe_optimizer=keras.optimizers.Adam(),jit_compile=False,
)
pretrain_history = model.fit(train_dataset, epochs=num_epochs, validation_data=test_dataset
)

正如 SEER、SimCLR、SwAV 等以前的方法所显示的那样,当你只能获得非常有限的标注训练数据,但却能设法建立大量未标注数据的语料库时,自我监督学习就特别有用。


这篇关于政安晨:【Keras机器学习示例演绎】(二十七)—— 利用 NNCLR 进行自我监督对比学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/953132

相关文章

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java高效实现PowerPoint转PDF的示例详解

《Java高效实现PowerPoint转PDF的示例详解》在日常开发或办公场景中,经常需要将PowerPoint演示文稿(PPT/PPTX)转换为PDF,本文将介绍从基础转换到高级设置的多种用法,大家... 目录为什么要将 PowerPoint 转换为 PDF安装 Spire.Presentation fo

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

使用MapStruct实现Java对象映射的示例代码

《使用MapStruct实现Java对象映射的示例代码》本文主要介绍了使用MapStruct实现Java对象映射的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、什么是 MapStruct?二、实战演练:三步集成 MapStruct第一步:添加 Mave