SQL如何利用Bitmap思想优化array_contains()函数

2024-05-01 16:28

本文主要是介绍SQL如何利用Bitmap思想优化array_contains()函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

0 问题描述

1 位图思想

2 案例实战

3 小结


0 问题描述

在工作中,我们往往使用array_contains()函数来进行存在性问题分析,如判断某个数是否在某个数组中,但是当表数据量过多,存在大量array_contains()函数时,就会存在一定性能问题,为了优化该函数的性能,本文主要利用位图的方法来代替array_contains()函数。

1 位图思想

   在本文之前读者需要先了解位图的概念及位图的一些性质,本文关于位图的概念不再重复。假如我们有如下需求,如下图所示,我们想判读数字2,5,7是否在数组[1,2,3,5,6]中时,如果用位图我们应该怎么做?通过两个位图相与就可以求出交集,通过下图可以看出bitmap1&bitmap2,可以求出交集2和5在数组中,因此关于此性质,我们可以得到判读存在性问题时,我们只需要构建两个位图与,结果有值不为0则为存在,那么问题来了,如何通过SQL的形式去构建呢?

   

相比大家对8421码比较熟悉,如1111,如下图所示

上述的式子我们可以进行如下等价

1111=15=1*2^0 + 1 * 2^1  +  1 * 2^2 +  1 * 2^3 <=> 1 << 0 + 1 << 1 + 1 << 2  + 1 << 3

因此我们构建数组 [1,2,3,5,6] 在位图中反应即为:

存在记为1,不存在记为0,即序列 01101110

那我们如何用SQL语言反应上述表达式呢?根据前面的等价转换,我们知道要反应01101110序列

即为:01101110=1*2^1 + 1*2^2 + 1*2^3 + 1*2^5 + 1*2^6 = 1 << 1 + 1 << 2 + 1 << 3 + 1 << 5 + 1 << 6。因此只要我们数据库中支持位移运算,就可以等价上述表达式。那么我们怎么判断数字2是否在上述数组中呢?数字2的位图根据以上推导,我们可以很快得出 1 << 2,而是否存在,只需要两者之间进行与运算即可,即:(1 << 2) &( 1 << 1 + 1 << 2 + 1 << 3 + 1 << 5 + 1 << 6),计算过程如下:

   01101110
&  00000010
————————————————
   00000010    =2

 

 总结上述规律,我们得出如下判断公式:

假设判断某个num是否在数组[a,b,c,d]中时,可用如下公式:
if{

   (1 << num) & (1 << a + 1 << b  + 1 << c + 1 << d) = num
   then true
   else false

};

上述操作对应不同数据库操作符不一样,如何hive中使用shiftleft函数,doris中采用bit_shift_ left()函数,greenplum中直接为 <<操作符。

2 案例实战

如下2张表tbl1,tbl2,假设表数据量很大,判断tbl2中的col1字段是否在表tbl1中对应的id num字段中。

具体SQL如下:

select  t1.id, col1,case when (1 << col1) & num ) = col1 then true else false end true_or_false_flgfrom tbl1 t1
left join
(select id ,sum(1 << num) numfrom tbl2group by id ) t2
on t1.id = t2.id

读者在遇到相关问题时,可以根据自己具体的场景进行等价变换,这里只是抛砖引玉说明具体使用方法、

3 小结

  本文主要阐述了如何利用位图思想优化array_contains()函数的方法,在具体业务中得到了较好的性能提升,当表数据量比较大,且利用array_contains()函数比较多时候,性能提升明显,利用计算机底层位移运算减少了开销。

这篇关于SQL如何利用Bitmap思想优化array_contains()函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/952138

相关文章

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

SQL Server 查询数据库及数据文件大小的方法

《SQLServer查询数据库及数据文件大小的方法》文章介绍了查询数据库大小的SQL方法及存储过程实现,涵盖当前数据库、所有数据库的总大小及文件明细,本文结合实例代码给大家介绍的非常详细,感兴趣的... 目录1. 直接使用SQL1.1 查询当前数据库大小1.2 查询所有数据库的大小1.3 查询每个数据库的详

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

MySQL 临时表与复制表操作全流程案例

《MySQL临时表与复制表操作全流程案例》本文介绍MySQL临时表与复制表的区别与使用,涵盖生命周期、存储机制、操作限制、创建方法及常见问题,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随小... 目录一、mysql 临时表(一)核心特性拓展(二)操作全流程案例1. 复杂查询中的临时表应用2. 临时