简单的LangGraph示例

2024-05-01 15:36
文章标签 简单 示例 langgraph

本文主要是介绍简单的LangGraph示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在学习智能体,然后又接触到LangGraph,参照文档尝试了一个简单的LangGraph demo。

一、环境准备:

pip install langchain
pip install langchain_openai
pip install langgraph

二、代码:

from typing import TypedDict, Annotated, Sequence
import operator
from langchain_core.messages import BaseMessage
from langchain.tools.render import format_tool_to_openai_function
from langchain_openai import ChatOpenAI
from langgraph.prebuilt import ToolExecutor
from langchain_community.tools.tavily_search import TavilySearchResults
from langgraph.prebuilt import ToolInvocation
import json
from langchain_core.messages import FunctionMessage
from langgraph.graph import StateGraph, END
from langchain_core.messages import HumanMessage# Import things that are needed generically
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, StructuredTool, tool# 加载 .env 到环境变量,这样就能读取到 .env文件中的 OPENAI_API_KEY和OPENAI_BASE_URL这个设置
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())# 自定义工具
@tool
def search(query: str) -> str:"""Look up things online."""print(f"search: {query}")return "sunny"@tool
def multiply(a: int, b: int) -> int:"""Multiply two numbers."""return a * b    tools = [search,multiply]tool_executor = ToolExecutor(tools)# We will set streaming=True so that we can stream tokens
# See the streaming section for more information on this.
model = ChatOpenAI(temperature=0, streaming=True)functions = [format_tool_to_openai_function(t) for t in tools]
model = model.bind_functions(functions)class AgentState(TypedDict):messages: Annotated[Sequence[BaseMessage], operator.add]# Define the function that determines whether to continue or not
def should_continue(state):messages = state['messages']last_message = messages[-1]# If there is no function call, then we finishif "function_call" not in last_message.additional_kwargs:return "end"# Otherwise if there is, we continueelse:return "continue"# Define the function that calls the model
def call_model(state):messages = state['messages']response = model.invoke(messages)# We return a list, because this will get added to the existing listreturn {"messages": [response]}# Define the function to execute tools
def call_tool(state):messages = state['messages']# Based on the continue condition# we know the last message involves a function calllast_message = messages[-1]# We construct an ToolInvocation from the function_callaction = ToolInvocation(tool=last_message.additional_kwargs["function_call"]["name"],tool_input=json.loads(last_message.additional_kwargs["function_call"]["arguments"]),)# We call the tool_executor and get back a responseresponse = tool_executor.invoke(action)print(f"response:{response}")# We use the response to create a FunctionMessagefunction_message = FunctionMessage(content=str(response), name=action.tool)print(f"function_message:{function_message}")# We return a list, because this will get added to the existing listreturn {"messages": [function_message]}    # Define a new graph
workflow = StateGraph(AgentState)# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("action", call_tool)# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.set_entry_point("agent")# We now add a conditional edge
workflow.add_conditional_edges(# First, we define the start node. We use `agent`.# This means these are the edges taken after the `agent` node is called."agent",# Next, we pass in the function that will determine which node is called next.should_continue,# Finally we pass in a mapping.# The keys are strings, and the values are other nodes.# END is a special node marking that the graph should finish.# What will happen is we will call `should_continue`, and then the output of that# will be matched against the keys in this mapping.# Based on which one it matches, that node will then be called.{# If `tools`, then we call the tool node."continue": "action",# Otherwise we finish."end": END}
)# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge('action', 'agent')# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile()    #inputs = {"messages": [HumanMessage(content="what is the weather in Beijing?")]}
inputs = {"messages": [HumanMessage(content="3乘以5等于多少,输出最终的结果")]}
response = app.invoke(inputs)
print(type(response))
print(f"last result:{response}")
# 输出如下信息:
# {'messages': [HumanMessage(content='3乘以5等于多少'), AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\n  "a": 3,\n  "b": 5\n}', 'name': 'multiply'}}, response_metadata={'finish_reason': 'function_call'}, id='run-bbf18160-747f-48ac-9a81-6c1ee3b70b07-0'), FunctionMessage(content='15', name='multiply'), AIMessage(content='3乘以5等于15。', response_metadata={'finish_reason': 'stop'}, id='run-0d1403cf-4ddb-4db2-8cfa-d0965666e62d-0')]}

关于状态机、节点、边、有向无环图等概念可以去参照相关文档,在这里就不赘述了。

上面代码添加了2个节点,其分别为agent和action,还添加了1个条件边。

三、解释一下几个函数:

3.1. add_node(key,action):

        添加节点。节点是要做处理的。
        key 是节点的名字,后面会根据这个名字去确定这个节点的。
        action是一个函数或者一个LCEL runnable,这个函数或者 LCEL runnable 应该接收一个和状态对象一样的字典作为输入,
        其输出也是以状态对象中的属性为key的一个字典,从而更新状态对象中对应的值。

3.2. add_edge(start_key, end_key)

        在两个节点之间添加边(连线),从前往后
        start_key 开始节点的名字
        end_key   结束节点的名字
  
 3.3. add_conditional_edges(source, path, path_map=None, then=None)

        添加条件边
        source (str) – 开始节点名
        path (Union[Callable, Runnable]) – 决定下一个节点的回调函数
        path_map (Optional[dict[str, str]], default: None ) – 映射下一个节点的字典.
        then (Optional[str], default: None ) – 执行完选择的节点后的下一个节点名
  
  3.4. set_entry_point(key)

        设置开始节点,图将从这个节点开始运行  

  3.5. compile(checkpointer=None, interrupt_before=None, interrupt_after=None, debug=False)

        编译state graph为CompiledGraph对象

这篇关于简单的LangGraph示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/952033

相关文章

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java高效实现PowerPoint转PDF的示例详解

《Java高效实现PowerPoint转PDF的示例详解》在日常开发或办公场景中,经常需要将PowerPoint演示文稿(PPT/PPTX)转换为PDF,本文将介绍从基础转换到高级设置的多种用法,大家... 目录为什么要将 PowerPoint 转换为 PDF安装 Spire.Presentation fo

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

使用MapStruct实现Java对象映射的示例代码

《使用MapStruct实现Java对象映射的示例代码》本文主要介绍了使用MapStruct实现Java对象映射的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、什么是 MapStruct?二、实战演练:三步集成 MapStruct第一步:添加 Mave