简单的LangGraph示例

2024-05-01 15:36
文章标签 简单 示例 langgraph

本文主要是介绍简单的LangGraph示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在学习智能体,然后又接触到LangGraph,参照文档尝试了一个简单的LangGraph demo。

一、环境准备:

pip install langchain
pip install langchain_openai
pip install langgraph

二、代码:

from typing import TypedDict, Annotated, Sequence
import operator
from langchain_core.messages import BaseMessage
from langchain.tools.render import format_tool_to_openai_function
from langchain_openai import ChatOpenAI
from langgraph.prebuilt import ToolExecutor
from langchain_community.tools.tavily_search import TavilySearchResults
from langgraph.prebuilt import ToolInvocation
import json
from langchain_core.messages import FunctionMessage
from langgraph.graph import StateGraph, END
from langchain_core.messages import HumanMessage# Import things that are needed generically
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, StructuredTool, tool# 加载 .env 到环境变量,这样就能读取到 .env文件中的 OPENAI_API_KEY和OPENAI_BASE_URL这个设置
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())# 自定义工具
@tool
def search(query: str) -> str:"""Look up things online."""print(f"search: {query}")return "sunny"@tool
def multiply(a: int, b: int) -> int:"""Multiply two numbers."""return a * b    tools = [search,multiply]tool_executor = ToolExecutor(tools)# We will set streaming=True so that we can stream tokens
# See the streaming section for more information on this.
model = ChatOpenAI(temperature=0, streaming=True)functions = [format_tool_to_openai_function(t) for t in tools]
model = model.bind_functions(functions)class AgentState(TypedDict):messages: Annotated[Sequence[BaseMessage], operator.add]# Define the function that determines whether to continue or not
def should_continue(state):messages = state['messages']last_message = messages[-1]# If there is no function call, then we finishif "function_call" not in last_message.additional_kwargs:return "end"# Otherwise if there is, we continueelse:return "continue"# Define the function that calls the model
def call_model(state):messages = state['messages']response = model.invoke(messages)# We return a list, because this will get added to the existing listreturn {"messages": [response]}# Define the function to execute tools
def call_tool(state):messages = state['messages']# Based on the continue condition# we know the last message involves a function calllast_message = messages[-1]# We construct an ToolInvocation from the function_callaction = ToolInvocation(tool=last_message.additional_kwargs["function_call"]["name"],tool_input=json.loads(last_message.additional_kwargs["function_call"]["arguments"]),)# We call the tool_executor and get back a responseresponse = tool_executor.invoke(action)print(f"response:{response}")# We use the response to create a FunctionMessagefunction_message = FunctionMessage(content=str(response), name=action.tool)print(f"function_message:{function_message}")# We return a list, because this will get added to the existing listreturn {"messages": [function_message]}    # Define a new graph
workflow = StateGraph(AgentState)# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("action", call_tool)# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.set_entry_point("agent")# We now add a conditional edge
workflow.add_conditional_edges(# First, we define the start node. We use `agent`.# This means these are the edges taken after the `agent` node is called."agent",# Next, we pass in the function that will determine which node is called next.should_continue,# Finally we pass in a mapping.# The keys are strings, and the values are other nodes.# END is a special node marking that the graph should finish.# What will happen is we will call `should_continue`, and then the output of that# will be matched against the keys in this mapping.# Based on which one it matches, that node will then be called.{# If `tools`, then we call the tool node."continue": "action",# Otherwise we finish."end": END}
)# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge('action', 'agent')# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile()    #inputs = {"messages": [HumanMessage(content="what is the weather in Beijing?")]}
inputs = {"messages": [HumanMessage(content="3乘以5等于多少,输出最终的结果")]}
response = app.invoke(inputs)
print(type(response))
print(f"last result:{response}")
# 输出如下信息:
# {'messages': [HumanMessage(content='3乘以5等于多少'), AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\n  "a": 3,\n  "b": 5\n}', 'name': 'multiply'}}, response_metadata={'finish_reason': 'function_call'}, id='run-bbf18160-747f-48ac-9a81-6c1ee3b70b07-0'), FunctionMessage(content='15', name='multiply'), AIMessage(content='3乘以5等于15。', response_metadata={'finish_reason': 'stop'}, id='run-0d1403cf-4ddb-4db2-8cfa-d0965666e62d-0')]}

关于状态机、节点、边、有向无环图等概念可以去参照相关文档,在这里就不赘述了。

上面代码添加了2个节点,其分别为agent和action,还添加了1个条件边。

三、解释一下几个函数:

3.1. add_node(key,action):

        添加节点。节点是要做处理的。
        key 是节点的名字,后面会根据这个名字去确定这个节点的。
        action是一个函数或者一个LCEL runnable,这个函数或者 LCEL runnable 应该接收一个和状态对象一样的字典作为输入,
        其输出也是以状态对象中的属性为key的一个字典,从而更新状态对象中对应的值。

3.2. add_edge(start_key, end_key)

        在两个节点之间添加边(连线),从前往后
        start_key 开始节点的名字
        end_key   结束节点的名字
  
 3.3. add_conditional_edges(source, path, path_map=None, then=None)

        添加条件边
        source (str) – 开始节点名
        path (Union[Callable, Runnable]) – 决定下一个节点的回调函数
        path_map (Optional[dict[str, str]], default: None ) – 映射下一个节点的字典.
        then (Optional[str], default: None ) – 执行完选择的节点后的下一个节点名
  
  3.4. set_entry_point(key)

        设置开始节点,图将从这个节点开始运行  

  3.5. compile(checkpointer=None, interrupt_before=None, interrupt_after=None, debug=False)

        编译state graph为CompiledGraph对象

这篇关于简单的LangGraph示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/952033

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot请求参数传递与接收示例详解

《SpringBoot请求参数传递与接收示例详解》本文给大家介绍SpringBoot请求参数传递与接收示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录I. 基础参数传递i.查询参数(Query Parameters)ii.路径参数(Path Va

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的