机器学习实战 —— 工业蒸汽量预测(二)

2024-05-01 10:36

本文主要是介绍机器学习实战 —— 工业蒸汽量预测(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 文章描述
  • 背景描述
  • 数据说明
  • 数据来源
  • 实战内容
    • 2.数据特征工程
      • 2.1数据预处理和特征处理
        • 2.1.1 异常值分析
        • 2.1.2 归一化处理
        • 2.1.3 特征相关性
      • 2.2 特征降维
        • 2.2.1 相关性初筛
        • 2.2.2 多重共线性分析
        • 2.2.3 PCA处理降维

文章描述

  • 数据分析:查看变量间相关性以及找出关键变量。
    机器学习实战 —— 工业蒸汽量预测(一)
  • 数据特征工程对数据精进:异常值处理、归一化处理以及特征降维。
    机器学习实战 —— 工业蒸汽量预测(二)
  • 模型训练(涉及主流ML模型):决策树、随机森林,lightgbm等。
    机器学习实战 —— 工业蒸汽量预测(三)
  • 模型验证:评估指标以及交叉验证等。
    机器学习实战 —— 工业蒸汽量预测(四)
  • 特征优化:用lgb对特征进行优化。
    机器学习实战 —— 工业蒸汽量预测(五)
  • 模型融合:进行基于stacking方式模型融合。
    机器学习实战 —— 工业蒸汽量预测(六)

背景描述

  • 背景介绍

火力发电的基本原理是:燃料在燃烧时加热水生成蒸汽,蒸汽压力推动汽轮机旋转,然后汽轮机带动发电机旋转,产生电能。在这一系列的能量转化中,影响发电效率的核心是锅炉的燃烧效率,即燃料燃烧加热水产生高温高压蒸汽。锅炉的燃烧效率的影响因素很多,包括锅炉的可调参数,如燃烧给量,一二次风,引风,返料风,给水水量;以及锅炉的工况,比如锅炉床温、床压,炉膛温度、压力,过热器的温度等。

  • 相关描述

经脱敏后的锅炉传感器采集的数据(采集频率是分钟级别),根据锅炉的工况,预测产生的蒸汽量。

  • 结果评估

预测结果以mean square error作为评判标准。

数据说明

数据分成训练数据(train.txt)和测试数据(test.txt),其中字段”V0”-“V37”,这38个字段是作为特征变量,”target”作为目标变量。选手利用训练数据训练出模型,预测测试数据的目标变量,排名结果依据预测结果的MSE(mean square error)。

数据来源

http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_test.txt

http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_train.txt

实战内容

2.数据特征工程

2.1数据预处理和特征处理

导入包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as snsfrom scipy import statsimport warnings
warnings.filterwarnings("ignore")%matplotlib inline# 读取数据
train_data_file = "./zhengqi_train.txt"
test_data_file =  "./zhengqi_test.txt"train_data = pd.read_csv(train_data_file, sep='\t', encoding='utf-8')
test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')

数据总览

train_data.describe()

在这里插入图片描述

2.1.1 异常值分析

异常值分析

plt.figure(figsize=(18, 10))
plt.boxplot(x=train_data.values,labels=train_data.columns)
plt.hlines([-7.5, 7.5], 0, 40, colors='r')
plt.show()

在这里插入图片描述

删除异常值

train_data = train_data[train_data['V9']>-7.5]
train_data.describe()

在这里插入图片描述

test_data.describe()

在这里插入图片描述

2.1.2 归一化处理
from sklearn import preprocessing features_columns = [col for col in train_data.columns if col not in ['target']]min_max_scaler = preprocessing.MinMaxScaler()min_max_scaler = min_max_scaler.fit(train_data[features_columns])train_data_scaler = min_max_scaler.transform(train_data[features_columns])
test_data_scaler = min_max_scaler.transform(test_data[features_columns])train_data_scaler = pd.DataFrame(train_data_scaler)
train_data_scaler.columns = features_columnstest_data_scaler = pd.DataFrame(test_data_scaler)
test_data_scaler.columns = features_columnstrain_data_scaler['target'] = train_data['target']train_data_scaler.describe()test_data_scaler.describe()

在这里插入图片描述

查看数据集情况

在这里插入图片描述

查看特征’V5’, ‘V17’, ‘V28’, ‘V22’, ‘V11’, 'V9’数据的数据分布

在这里插入图片描述

这几个特征下,训练集的数据和测试集的数据分布不一致,会影响模型的泛化能力,故删除这些特征

2.1.3 特征相关性

在这里插入图片描述

2.2 特征降维

在这里插入图片描述

2.2.1 相关性初筛

在这里插入图片描述

2.2.2 多重共线性分析

在这里插入图片描述

2.2.3 PCA处理降维
from sklearn.decomposition import PCA   #主成分分析法#PCA方法降维
#保持90%的信息
pca = PCA(n_components=0.9)
new_train_pca_90 = pca.fit_transform(train_data_scaler.iloc[:,0:-1])
new_test_pca_90 = pca.transform(test_data_scaler)
new_train_pca_90 = pd.DataFrame(new_train_pca_90)
new_test_pca_90 = pd.DataFrame(new_test_pca_90)
new_train_pca_90['target'] = train_data_scaler['target']
new_train_pca_90.describe()

在这里插入图片描述

train_data_scaler.describe()

在这里插入图片描述

PCA方法降维

保留16个主成分

pca = PCA(n_components=0.95)
new_train_pca_16 = pca.fit_transform(train_data_scaler.iloc[:,0:-1])
new_test_pca_16 = pca.transform(test_data_scaler)
new_train_pca_16 = pd.DataFrame(new_train_pca_16)
new_test_pca_16 = pd.DataFrame(new_test_pca_16)
new_train_pca_16['target'] = train_data_scaler['target']
new_train_pca_16.describe()

在这里插入图片描述

这篇关于机器学习实战 —— 工业蒸汽量预测(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/951467

相关文章

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.