IPM原理

2024-05-01 10:20
文章标签 原理 ipm

本文主要是介绍IPM原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

IPM原理

  • 1. 什么是IPM
  • 2. 鸟瞰图拼接
  • 3. Ipm鸟瞰图效果

这里只是简单记录IPM的原理思想和应用,工程中还需考虑很多的影响,比如说pitch角等

1. 什么是IPM

IPM变换就是消除这种透视效应,所以也叫逆透视。原本平行的两条车道线,在针孔相机下因为透视变换,在图片中看到的效果并不平行,这是因为透视现象。而IPM的思想可以将原来的透视结果转换到鸟瞰图的视野下,看到的车道线也是水平的。

在这里插入图片描述

透视变换的作用是让我们从另外一个角度观察图片中的场景,例如俯视。它能帮助我们避免例如“近大远小”造成的图像世界与现实世界的偏差,其方法的本质是“映射”,将原图像的像素点按照一定的“比例”映射到另外一张图上。

IPM变换具有很多应用,求取IPM图像的方法亦是有很多。

IPM的本质是切换视野,比如将原来的视图切换到BEV视野下。

在不知道相机的参数的情况下,拍摄两张不同角度,但是有重复视野的图片。通过得到两张图片中重合视野部分的特征对应点,构建一系列方程,就可以得到两个视野之间的单应矩阵,完成视野之间的切换,但是需要注意的是,图片A变换到图片B的视野,图片包含的信息还是图片A的信息,只是视野重合的部分之间一致。

  • 为什么两个不同的视野之间的变换,可以使用一个单应性矩阵代替?
    因为可以假定空间中有一个点P, 两个相机坐标系 C A , C B C_A,C_B CA,CB。两个相机的内外参已知,那么通过内外参可以得到点P在两个像素坐标系中的像素坐标。详细步骤请看,
    [ u A v A 1 ] = λ A ⋅ I A ⋅ [ r A 1 r A 2 r A 3 t A ] ⋅ [ X w Y w Z w 1 ] [ u B v B 1 ] = λ B ⋅ I B ⋅ [ r B 1 r B 2 r B 3 t B ] ⋅ [ X w Y w Z w 1 ] [ X w Y w Z w 1 ] = 1 λ A [ r A 1 r A 2 r A 3 t A ] − 1 ⋅ I A − 1 [ u A v A 1 ] [ X w Y w Z w 1 ] = 1 λ B [ r B 1 r B 2 r B 3 t B ] − 1 ⋅ I B − 1 [ u B v B 1 ] [ u A v A 1 ] = λ A λ B ⋅ I A ⋅ [ r A 1 r A 2 r A 3 t A ] ⋅ [ r B 1 r B 2 r B 3 t B ] − 1 ⋅ I B − 1 [ u B v B 1 ] \begin{align} \begin{bmatrix} u_A \\ v_A \\ 1 \end{bmatrix} &= \lambda_A \cdot I_A \cdot \begin{bmatrix} r_{A1} & r_{A2} & r_{A3} & t_A \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \\ \begin{bmatrix} u_B \\ v_B \\ 1 \end{bmatrix} &= \lambda_B \cdot I_B \cdot \begin{bmatrix} r_{B1} & r_{B2} & r_{B3} & t_B \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \\ \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} &= {1 \over \lambda_A} \begin{bmatrix} r_{A1} & r_{A2} & r_{A3} & t_A \end{bmatrix} ^ {-1} \cdot I_A^{-1} \begin{bmatrix} u_A \\ v_A \\ 1 \end{bmatrix} \\ \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} &= {1 \over \lambda_B} \begin{bmatrix} r_{B1} & r_{B2} & r_{B3} & t_B \end{bmatrix} ^ {-1} \cdot I_B^{-1} \begin{bmatrix} u_B \\ v_B \\ 1 \end{bmatrix} \\ \begin{bmatrix} u_A \\ v_A \\ 1 \end{bmatrix} &= {\lambda_A \over \lambda_B} \cdot I_A \cdot \begin{bmatrix} r_{A1} & r_{A2} & r_{A3} & t_A \end{bmatrix} \cdot \begin{bmatrix} r_{B1} & r_{B2} & r_{B3} & t_B \end{bmatrix} ^ {-1} \cdot I_B^{-1} \begin{bmatrix} u_B \\ v_B \\ 1 \end{bmatrix} \end{align} uAvA1 uBvB1 XwYwZw1 XwYwZw1 uAvA1 =λAIA[rA1rA2rA3tA] XwYwZw1 =λBIB[rB1rB2rB3tB] XwYwZw1 =λA1[rA1rA2rA3tA]1IA1 uAvA1 =λB1[rB1rB2rB3tB]1IB1 uBvB1 =λBλAIA[rA1rA2rA3tA][rB1rB2rB3tB]1IB1 uBvB1
    由式(5)可以得出,同一个点在两个不同位置相机的像素坐标系中的像素坐标之间存在一个变换关系,这里的相机内外参已知,所以可以直接记单应矩阵 H H H为,
    H = λ A λ B ⋅ I A ⋅ [ r A 1 r A 2 r A 3 t A ] ⋅ [ r B 1 r B 2 r B 3 t B ] − 1 ⋅ I B − 1 H = {\lambda_A \over \lambda_B} \cdot I_A \cdot \begin{bmatrix} r_{A1} & r_{A2} & r_{A3} & t_A \end{bmatrix} \cdot \begin{bmatrix} r_{B1} & r_{B2} & r_{B3} & t_B \end{bmatrix} ^ {-1} \cdot I_B^{-1} H=λBλAIA[rA1rA2rA3tA][rB1rB2rB3tB]1IB1
    这是在已知两个相机的外参和内参的情况下,可以直接获取两者的单应变换。但是如果不知道两个相机的内外参数,只有两张图片,怎么通过两张图片得到两者的单应矩阵?这就需要2D to 2D的非线性优化方式了。

  • 直接使用两张不同视野下的图片(图片视野有重合),怎么直接得到单应矩阵?
    在这里插入图片描述
    需要注意的是,为什么单应矩阵只有8个自由度
    在这里插入图片描述

2. 鸟瞰图拼接

这里介绍一种,将车身周围多个相机视野拼接为一个全BEV视野俯视图的方式,也是BEV感知中,将2D图片的feature给到BEV空间的基本思路。可以理解为一个映射的过程

  • 已自车为原点,选定感知范围,比如纵向前后50m,横向左右30m。设置栅格分辨率为0.1m,得到大小为 600 × 1000 600 \times 1000 600×1000的栅格图
  • 建立空的cv::Mat画板,大小为 600 × 1000 600 \times 1000 600×1000
  • 遍历栅格图,利用相机内参外完成栅格中心点的自车系坐标到像素坐标系的转化,得到对应的原相机像素坐标,并将这个像素的三个颜色通道赋值给BEV栅格

3. Ipm鸟瞰图效果

内部图 不方便展示
Ipm鸟瞰图效果

https://yanyx.blog.csdn.net/article/details/104791610
https://blog.csdn.net/feiyang_luo/article/details/103555036

这篇关于IPM原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/951431

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja