吴恩达机器学习笔记:第 9 周-15 异常检测(Anomaly Detection) 15.1-15.2

本文主要是介绍吴恩达机器学习笔记:第 9 周-15 异常检测(Anomaly Detection) 15.1-15.2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 第 9 周 15、 异常检测(Anomaly Detection)
    • 15.1 问题的动机
    • 15.2 高斯分布

第 9 周 15、 异常检测(Anomaly Detection)

15.1 问题的动机

在接下来的一系列视频中,我将向大家介绍异常检测(Anomaly detection)问题。这是机器学习算法的一个常见应用。这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又类似于一些监督学习问题。

什么是异常检测呢?为了解释这个概念,让我举一个例子吧:

假想你是一个飞机引擎制造商,当你生产的飞机引擎从生产线上流出时,你需要进行QA(质量控制测试),而作为这个测试的一部分,你测量了飞机引擎的一些特征变量,比如引擎运转时产生的热量,或者引擎的振动等等。

在这里插入图片描述
这样一来,你就有了一个数据集,从 x ( 1 ) x^{(1)} x(1) x ( m ) x^{(m)} x(m),如果你生产了𝑚个引擎的话,你将这些数据绘制成图表,看起来就是这个样子:
在这里插入图片描述
这里的每个点、每个叉,都是你的无标签数据。这样,异常检测问题可以定义如下:我们假设后来有一天,你有一个新的飞机引擎从生产线上流出,而你的新飞机引擎有特征变量 x t e s t x_{test} xtest。所谓的异常检测问题就是:我们希望知道这个新的飞机引擎是否有某种异常,或者说,我们希望判断这个引擎是否需要进一步测试。因为,如果它看起来像一个正常的引擎,那么我们可以直接将它运送到客户那里,而不需要进一步的测试。

给定数据集 x ( 1 ) , x ( 2 ) , . . , x ( m ) x^{(1)}, x^{(2)}, . . , x^{(m)} x(1),x(2),..,x(m),我们假使数据集是正常的,我们希望知道新的数据 x t e s t x_{test} xtest是不是异常的,即这个测试数据不属于该组数据的几率如何。我们所构建的模型应该能根据该测试数据的位置告诉我们其属于一组数据的可能性 𝑝(𝑥)。
在这里插入图片描述
上图中,在蓝色圈内的数据属于该组数据的可能性较高,而越是偏远的数据,其属于该组数据的可能性就越低。

这种方法称为密度估计,表达如下:
i f p ( x ) = { < ε , a n o m a l y > = ε , n o r m a l if \quad p(x)=\begin{cases} <ε,anomaly\\ >=ε, normal \end{cases} ifp(x)={<ε,anomaly>=ε,normal
欺诈检测: x ( i ) x^{(i)} x(i) = 用户的第 𝑖个活动特征
模型 p ( x ) p(x) p(x) 为我们其属于一组数据的可能性,通过 p ( x ) p(x) p(x) <ε 检测非正常用户。

异常检测主要用来识别欺骗。例如在线采集而来的有关用户的数据,一个特征向量中可能会包含如:用户多久登录一次,访问过的页面,在论坛发布的帖子数量,甚至是打字速度等。尝试根据这些特征构建一个模型,可以用这个模型来识别那些不符合该模式的用户。

再一个例子是检测一个数据中心,特征可能包含:内存使用情况,被访问的磁盘数量,CPU 的负载,网络的通信量等。根据这些特征可以构建一个模型,用来判断某些计算机是不是有可能出错了。

15.2 高斯分布

在这个视频中,我将介绍高斯分布,也称为正态分布。回顾高斯分布的基本知识。通常如果我们认为变量 𝑥 符合高斯分布 𝑥 ∼ 𝑁( μ , σ 2 \mu, \sigma^2 μ,σ2)则其概率密度函数为:

p ( x , μ , σ 2 ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 p(x,\mu,\sigma^2) =\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} p(x,μ,σ2)=2πσ2 1e2σ2(xμ)2

我们可以利用已有的数据来预测总体中的 μ \mu μ σ 2 \sigma^2 σ2,计算方法如下:
μ = 1 m ∑ i = 1 m x i \mu=\frac{1}{m}\sum_{i=1}^m{x^{i}} μ=m1i=1mxi
σ 2 = 1 m ∑ i = 1 m ( x i − μ ) 2 \sigma^2 =\frac{1}{m}\sum_{i=1}^m{(x^{i}-\mu)^2} σ2=m1i=1m(xiμ)2

在这里插入图片描述
注:机器学习中对于方差我们通常只除以𝑚而非统计学中的(𝑚 − 1)。这里顺便提一下,在实际使用中,到底是选择使用 1 m \frac{1}{m} m1还是 1 m − 1 \frac{1}{m-1} m11其实区别很小,只要你有一个还算大的训练集,在机器学习领域大部分人更习惯使用 1 m \frac{1}{m} m1这个版本的公式。这两个版本的公式在理论特性和数学特性上稍有不同,但是在实际使用中,他们的区别甚小,几乎可以忽略不计。

这篇关于吴恩达机器学习笔记:第 9 周-15 异常检测(Anomaly Detection) 15.1-15.2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950647

相关文章

Java.lang.InterruptedException被中止异常的原因及解决方案

《Java.lang.InterruptedException被中止异常的原因及解决方案》Java.lang.InterruptedException是线程被中断时抛出的异常,用于协作停止执行,常见于... 目录报错问题报错原因解决方法Java.lang.InterruptedException 是 Jav

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间