吴恩达机器学习笔记:第 9 周-15 异常检测(Anomaly Detection) 15.1-15.2

本文主要是介绍吴恩达机器学习笔记:第 9 周-15 异常检测(Anomaly Detection) 15.1-15.2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 第 9 周 15、 异常检测(Anomaly Detection)
    • 15.1 问题的动机
    • 15.2 高斯分布

第 9 周 15、 异常检测(Anomaly Detection)

15.1 问题的动机

在接下来的一系列视频中,我将向大家介绍异常检测(Anomaly detection)问题。这是机器学习算法的一个常见应用。这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又类似于一些监督学习问题。

什么是异常检测呢?为了解释这个概念,让我举一个例子吧:

假想你是一个飞机引擎制造商,当你生产的飞机引擎从生产线上流出时,你需要进行QA(质量控制测试),而作为这个测试的一部分,你测量了飞机引擎的一些特征变量,比如引擎运转时产生的热量,或者引擎的振动等等。

在这里插入图片描述
这样一来,你就有了一个数据集,从 x ( 1 ) x^{(1)} x(1) x ( m ) x^{(m)} x(m),如果你生产了𝑚个引擎的话,你将这些数据绘制成图表,看起来就是这个样子:
在这里插入图片描述
这里的每个点、每个叉,都是你的无标签数据。这样,异常检测问题可以定义如下:我们假设后来有一天,你有一个新的飞机引擎从生产线上流出,而你的新飞机引擎有特征变量 x t e s t x_{test} xtest。所谓的异常检测问题就是:我们希望知道这个新的飞机引擎是否有某种异常,或者说,我们希望判断这个引擎是否需要进一步测试。因为,如果它看起来像一个正常的引擎,那么我们可以直接将它运送到客户那里,而不需要进一步的测试。

给定数据集 x ( 1 ) , x ( 2 ) , . . , x ( m ) x^{(1)}, x^{(2)}, . . , x^{(m)} x(1),x(2),..,x(m),我们假使数据集是正常的,我们希望知道新的数据 x t e s t x_{test} xtest是不是异常的,即这个测试数据不属于该组数据的几率如何。我们所构建的模型应该能根据该测试数据的位置告诉我们其属于一组数据的可能性 𝑝(𝑥)。
在这里插入图片描述
上图中,在蓝色圈内的数据属于该组数据的可能性较高,而越是偏远的数据,其属于该组数据的可能性就越低。

这种方法称为密度估计,表达如下:
i f p ( x ) = { < ε , a n o m a l y > = ε , n o r m a l if \quad p(x)=\begin{cases} <ε,anomaly\\ >=ε, normal \end{cases} ifp(x)={<ε,anomaly>=ε,normal
欺诈检测: x ( i ) x^{(i)} x(i) = 用户的第 𝑖个活动特征
模型 p ( x ) p(x) p(x) 为我们其属于一组数据的可能性,通过 p ( x ) p(x) p(x) <ε 检测非正常用户。

异常检测主要用来识别欺骗。例如在线采集而来的有关用户的数据,一个特征向量中可能会包含如:用户多久登录一次,访问过的页面,在论坛发布的帖子数量,甚至是打字速度等。尝试根据这些特征构建一个模型,可以用这个模型来识别那些不符合该模式的用户。

再一个例子是检测一个数据中心,特征可能包含:内存使用情况,被访问的磁盘数量,CPU 的负载,网络的通信量等。根据这些特征可以构建一个模型,用来判断某些计算机是不是有可能出错了。

15.2 高斯分布

在这个视频中,我将介绍高斯分布,也称为正态分布。回顾高斯分布的基本知识。通常如果我们认为变量 𝑥 符合高斯分布 𝑥 ∼ 𝑁( μ , σ 2 \mu, \sigma^2 μ,σ2)则其概率密度函数为:

p ( x , μ , σ 2 ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 p(x,\mu,\sigma^2) =\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} p(x,μ,σ2)=2πσ2 1e2σ2(xμ)2

我们可以利用已有的数据来预测总体中的 μ \mu μ σ 2 \sigma^2 σ2,计算方法如下:
μ = 1 m ∑ i = 1 m x i \mu=\frac{1}{m}\sum_{i=1}^m{x^{i}} μ=m1i=1mxi
σ 2 = 1 m ∑ i = 1 m ( x i − μ ) 2 \sigma^2 =\frac{1}{m}\sum_{i=1}^m{(x^{i}-\mu)^2} σ2=m1i=1m(xiμ)2

在这里插入图片描述
注:机器学习中对于方差我们通常只除以𝑚而非统计学中的(𝑚 − 1)。这里顺便提一下,在实际使用中,到底是选择使用 1 m \frac{1}{m} m1还是 1 m − 1 \frac{1}{m-1} m11其实区别很小,只要你有一个还算大的训练集,在机器学习领域大部分人更习惯使用 1 m \frac{1}{m} m1这个版本的公式。这两个版本的公式在理论特性和数学特性上稍有不同,但是在实际使用中,他们的区别甚小,几乎可以忽略不计。

这篇关于吴恩达机器学习笔记:第 9 周-15 异常检测(Anomaly Detection) 15.1-15.2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950647

相关文章

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦