学会使用 NumPy:基础、随机、ufunc 和练习测试

2024-05-01 03:04

本文主要是介绍学会使用 NumPy:基础、随机、ufunc 和练习测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NumPy

NumPy 是一个用于处理数组的 Python 库。它代表“Numerical Python”。

基本

随机

ufunc

通过测验测试学习

检验您对 NumPy 的掌握程度。

通过练习学习

NumPy 练习

练习:

请插入创建 NumPy 数组的正确方法。

arr = np.
([1, 2, 3, 4, 5])

示例

创建 NumPy 数组:

import numpy as nparr = np.array([1, 2, 3, 4, 5])print(arr)
print(type(arr))

输出:

[1 2 3 4 5]
<class 'numpy.ndarray'>

NumPy 简介

什么是 NumPy?

NumPy 是一个用于处理数组的 Python 库。它代表“Numerical Python”。它提供了一个称为 ndarray 的多维数组对象,以及用于操作这些数组的高效函数。NumPy 还提供了用于线性代数、傅里叶变换和矩阵领域的函数。

NumPy 由 Travis Oliphant 于 2005 年创建,是一个开源项目,可以免费使用。

为什么使用 NumPy?

在 Python 中,我们有列表来实现数组的功能,但是它们处理起来速度较慢。NumPy 旨在提供一个比传统 Python 列表快 50 倍的数组对象。NumPy 中的数组对象称为 ndarray,它提供了许多支持函数,使得与 ndarray 的操作非常简单。

在数据科学中,数组被非常频繁地使用,速度和资源非常重要。

数据科学:是计算机科学的一个分支,研究如何存储、使用和分析数据以从中获得信息。

为什么 NumPy 比列表快?

NumPy 数组在内存中是连续存储的,而不像列表那样存储不连续,因此进程可以非常高效地访问和操作它们。这种行为在计算机科学中称为局部性引用。

这就是 NumPy 比列表更快的主要原因。此外,它还经过优化以与最新的 CPU 架构配合工作。

NumPy 是用哪种语言编写的?

NumPy 是一个 Python 库,部分是用 Python 编写的,但大多数需要快速计算的部分是用 C 或 C++ 编写的。

NumPy 入门

安装 NumPy

如果您已经安装了 Python 和 PIP,则安装 NumPy 非常简单。

使用以下命令进行安装:

C:\Users\Your Name>pip install numpy

如果此命令失败,则可以使用已经安装了 NumPy 的 Python 发行版,如 Anaconda、Spyder 等。

导入 NumPy

一旦安装了 NumPy,通过添加 import 关键字将其导入到您的应用程序中:

import numpy

现在 NumPy 已经被导入并且可以使用了。

示例:

import numpyarr = numpy.array([1, 2, 3, 4, 5])print(arr)

NumPy 的别名 np

通常,NumPy 被导入时会使用 np 别名。

别名:在 Python 中,别名是指同一个东西的另一个名称。

可以使用 as 关键字在导入时创建别名:

import numpy as np

现在可以使用 np 来引用 NumPy 包,而不是使用 numpy

示例

import numpy as nparr = np.array([1, 2, 3, 4, 5])print(arr)

检查 NumPy 版本

NumPy 版本信息存储在 __version__ 属性中。

示例

import numpy as npprint(np.__version__)

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

这篇关于学会使用 NumPy:基础、随机、ufunc 和练习测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950580

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do