smac 路径优化器分析——距离成本和代价地图成本分析

2024-05-01 02:44

本文主要是介绍smac 路径优化器分析——距离成本和代价地图成本分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考

泰勒级数直观详解

前向差分,后向差分,中心差分

相关文章

smac 路径优化器分析——平滑度成本分析

smac 路径优化器分析——曲率成本分析

距离成本

距离成本函数

用优化后的点与原路径点的欧氏距离的平方作为成本。

下图中蓝色原点是原路径点,红色原点是优化后路径点。

fig.1 距离成本示意图

距离成本函数为:

Cost_{distance}=\overrightarrow{(p_i-x_i)} \cdot \overrightarrow{(p_i-x_i)}

p_i 是优化后的路径点,x_i 是原路径点。

距离成本梯度函数

距离成本函数表示为:

Cost_{distance}=\overrightarrow{(p_i-x_i)} \cdot \overrightarrow{(p_i-x_i)}= (p_{ix}-x_{ix})^2+(p_{iy}-x_{iy})^2

偏导数可以得到:

\frac{\partial{p_i}}{\partial x}=2*(p_{ix}-x_{ix})

\frac{\partial{p_i}}{\partial y}=2*(p_{iy}-x_{iy})

代价地图成本

代价地图成本函数

Smac 直接使用路径点所在的 costmap2D 地图栅格的代价值的平方作为代价地图成本。
下图中黄色圆点表示路径点,背景是 costmap2D 地图。

fig.2 代价地图成本示意图

代价地图成本函数为:

Cost_{costmap}=(costmap.getCost(p_{ix}, p_{iy}))^2

代价地图成本梯度函数

按源码提示是根据泰勒级数展开计算的,但是我颠来倒去都推导不出源码的公式。゚(TヮT)゚。

如果是使用中心差分法,那么 Δh 步进越小,计算得到的梯度才越精确。在栅格地图中最小自变量偏移是 1 个栅格。

令 f(x)=costmap.getCost(x),那么代价地图成本为 c(x)=f(x)^2,根据中心差分法,在点 a 处对 x 求偏导有

\begin{aligned} \frac{\partial c(x,y)}{\partial x} &= \frac{\partial f(x_a,y_a)^2}{\partial x} \\ &= 2*f(x_a,y_a)*f'(x_a,y_a) \\ &=2*f(x_a,y_a) \frac{f(x_a+1,y_a)-f(x_a-1,y_a)}{2} \\ &=f(x_a,y_a)(f(x_a+1,y_a)-f(x_a-1,y_a)) \end{aligned}

同理,在点 a 处对 y 求偏导有

\frac{\partial c(x,y)}{\partial y}=f(x_a,y_a)(f(x_a,y_a+1)-f(x_a,y_a-1))

代价地图梯度函数优化对比

smac 的 smoother 路径平滑器仅打开代价地图成本和距离成本函数和成本梯度函数的优化对比。
绿色路径是随机生成的路径,红色路径是 smac 源码优化后的路径,黄色路径是使用本文代价地图成本梯度函数优化后的路径。由于路径的起点和终点并不参与优化过程,所以起点和终点的位置始终不会变,这里的路径发布我去掉了优化后路径的终点。

新旧对比代价梯度-红旧黄新


为了观察清楚代价地图成本优化效果,costmap2d 的膨胀半径增大,同时将代价缩放因子调整到合适的参数,使得代价值能够平缓地在膨胀半径边缘降到最低。

这篇关于smac 路径优化器分析——距离成本和代价地图成本分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950543

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

C#实现SHP文件读取与地图显示的完整教程

《C#实现SHP文件读取与地图显示的完整教程》在地理信息系统(GIS)开发中,SHP文件是一种常见的矢量数据格式,本文将详细介绍如何使用C#读取SHP文件并实现地图显示功能,包括坐标转换、图形渲染、平... 目录概述功能特点核心代码解析1. 文件读取与初始化2. 坐标转换3. 图形绘制4. 地图交互功能缩放

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke