代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集

本文主要是介绍代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01背包问题,你该了解这些! 

46. 携带研究材料(第六期模拟笔试) (kamacoder.com)

代码随想录 (programmercarl.com)

  1. 确定dp数组(dp table)以及下标的含义:dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少
  2. 确定递推公式:

    两个方向推出来dp[i][j],

    1. 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
    2. 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
  3. dp数组如何初始化:

    首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

    动态规划-背包问题2

    在看其他情况。

    状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

    dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

    那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

    当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

    动态规划-背包问题7

  4. 确定遍历顺序:

    dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

    dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

    动态规划-背包问题5

    再来看看先遍历背包,再遍历物品呢,如图:

    动态规划-背包问题6

    大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

    但先遍历物品再遍历背包这个顺序更好理解

  5. 举例推导dp数组:

题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。 

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

输入描述

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。 

第三行包含 M 个正整数,代表每种研究材料的价值。

输出描述

输出一个整数,代表小明能够携带的研究材料的最大价值。

注意代码为ACM模式,输入m为物品数横轴,n为重量,作为纵轴,矩阵尺寸应为mx(n+1),因为n多出了需要考虑重量是0的情况。

m, n = map(int, input().split())weights = list(map(int, input().split()))
values = list(map(int, input().split()))
#initialize
dp = [[0]*(n+1) for _ in range(m)]
#when n = 0, dp[i][0] = 0
for j in range(n+1):if weights[0]<=j:dp[0][j] = values[0]else:dp[0][j] = 0
def bag():for i in range(1,m):for j in range(1,n+1):if j<weights[i]:dp[i][j] = dp[i-1][j]else:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i]]+values[i])return dp[m-1][n]
print(bag())

01背包问题,你该了解这些! 滚动数组  

  1. 确定dp数组的定义:在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
  2. 一维dp数组的递推公式:两种可能,一种是不放入物品i,及自身的价值dp[j],一种是放入物品i,dp[j-weights[i]]+values[i],所以dp[j] = max(dp[j], dp[j-weigts[i]]+values[i])
  3. 一维dp数组如何初始化

    关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

    dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

    那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

    看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

    这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

    那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了

  4. 一维dp数组遍历顺序:从后向前,避免重复添加上一层数量,先遍历物品,再遍历背包。
  5. 举例推导dp数组

ACM代码:

m, n = map(int, input().split())
weights = list(map(int, input().split()))
values = list(map(int, input().split()))
#initialize
dp = [0]*(n+1) #1-dimensional array
def bag():for i in range(m):for j in range(n,weights[i]-1, -1):dp[j] = max(dp[j], dp[j-weights[i]]+values[i])return dp[n]
print(bag())

416. 分割等和子集 

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

解题思路:

本题可以使用回溯或背包解答。可以将其看作一个nums,如果该数组能得到一个sum(nums)//2的子集,该数组可以拆成两个一样的子数集且和相等,return True。

类似于背包问题的解题思路,

1. 确认dp数组的定义:dp[j]当容量为j时的最大数之和(最大价值),需要注意的是,这里物品i和价值均为nums[i].

2. 一维dp推导公式:dp[j] = max(dp[j], dp[j-weights[i]]+values[i])

3. 一维dp数组如何初始化:dp[0] = 0

4. 一维dp数组遍历顺序:从后向前,避免重复添加上一层数量,先遍历物品,再遍历背包

5. 举例推导dp数组

代码:

class Solution:def canPartition(self, nums: List[int]) -> bool:if sum(nums)%2 != 0:return Falsetarget = sum(nums)//2#target is the largest bagweightdp = [0]*(target+1)for i in range(len(nums)):for j in range(target, nums[i]-1, -1):dp[j] = max(dp[j], dp[j-nums[i]]+nums[i])if dp[target] == target:return Truereturn False

这篇关于代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949910

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以