代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集

本文主要是介绍代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01背包问题,你该了解这些! 

46. 携带研究材料(第六期模拟笔试) (kamacoder.com)

代码随想录 (programmercarl.com)

  1. 确定dp数组(dp table)以及下标的含义:dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少
  2. 确定递推公式:

    两个方向推出来dp[i][j],

    1. 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
    2. 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
  3. dp数组如何初始化:

    首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

    动态规划-背包问题2

    在看其他情况。

    状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

    dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

    那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

    当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

    动态规划-背包问题7

  4. 确定遍历顺序:

    dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

    dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

    动态规划-背包问题5

    再来看看先遍历背包,再遍历物品呢,如图:

    动态规划-背包问题6

    大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

    但先遍历物品再遍历背包这个顺序更好理解

  5. 举例推导dp数组:

题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。 

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

输入描述

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。 

第三行包含 M 个正整数,代表每种研究材料的价值。

输出描述

输出一个整数,代表小明能够携带的研究材料的最大价值。

注意代码为ACM模式,输入m为物品数横轴,n为重量,作为纵轴,矩阵尺寸应为mx(n+1),因为n多出了需要考虑重量是0的情况。

m, n = map(int, input().split())weights = list(map(int, input().split()))
values = list(map(int, input().split()))
#initialize
dp = [[0]*(n+1) for _ in range(m)]
#when n = 0, dp[i][0] = 0
for j in range(n+1):if weights[0]<=j:dp[0][j] = values[0]else:dp[0][j] = 0
def bag():for i in range(1,m):for j in range(1,n+1):if j<weights[i]:dp[i][j] = dp[i-1][j]else:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i]]+values[i])return dp[m-1][n]
print(bag())

01背包问题,你该了解这些! 滚动数组  

  1. 确定dp数组的定义:在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
  2. 一维dp数组的递推公式:两种可能,一种是不放入物品i,及自身的价值dp[j],一种是放入物品i,dp[j-weights[i]]+values[i],所以dp[j] = max(dp[j], dp[j-weigts[i]]+values[i])
  3. 一维dp数组如何初始化

    关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

    dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

    那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

    看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

    这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

    那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了

  4. 一维dp数组遍历顺序:从后向前,避免重复添加上一层数量,先遍历物品,再遍历背包。
  5. 举例推导dp数组

ACM代码:

m, n = map(int, input().split())
weights = list(map(int, input().split()))
values = list(map(int, input().split()))
#initialize
dp = [0]*(n+1) #1-dimensional array
def bag():for i in range(m):for j in range(n,weights[i]-1, -1):dp[j] = max(dp[j], dp[j-weights[i]]+values[i])return dp[n]
print(bag())

416. 分割等和子集 

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

解题思路:

本题可以使用回溯或背包解答。可以将其看作一个nums,如果该数组能得到一个sum(nums)//2的子集,该数组可以拆成两个一样的子数集且和相等,return True。

类似于背包问题的解题思路,

1. 确认dp数组的定义:dp[j]当容量为j时的最大数之和(最大价值),需要注意的是,这里物品i和价值均为nums[i].

2. 一维dp推导公式:dp[j] = max(dp[j], dp[j-weights[i]]+values[i])

3. 一维dp数组如何初始化:dp[0] = 0

4. 一维dp数组遍历顺序:从后向前,避免重复添加上一层数量,先遍历物品,再遍历背包

5. 举例推导dp数组

代码:

class Solution:def canPartition(self, nums: List[int]) -> bool:if sum(nums)%2 != 0:return Falsetarget = sum(nums)//2#target is the largest bagweightdp = [0]*(target+1)for i in range(len(nums)):for j in range(target, nums[i]-1, -1):dp[j] = max(dp[j], dp[j-nums[i]]+nums[i])if dp[target] == target:return Truereturn False

这篇关于代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949910

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息