代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集

本文主要是介绍代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01背包问题,你该了解这些! 

46. 携带研究材料(第六期模拟笔试) (kamacoder.com)

代码随想录 (programmercarl.com)

  1. 确定dp数组(dp table)以及下标的含义:dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少
  2. 确定递推公式:

    两个方向推出来dp[i][j],

    1. 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
    2. 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
  3. dp数组如何初始化:

    首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

    动态规划-背包问题2

    在看其他情况。

    状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

    dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

    那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

    当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

    动态规划-背包问题7

  4. 确定遍历顺序:

    dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

    dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

    动态规划-背包问题5

    再来看看先遍历背包,再遍历物品呢,如图:

    动态规划-背包问题6

    大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

    但先遍历物品再遍历背包这个顺序更好理解

  5. 举例推导dp数组:

题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。 

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

输入描述

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。 

第三行包含 M 个正整数,代表每种研究材料的价值。

输出描述

输出一个整数,代表小明能够携带的研究材料的最大价值。

注意代码为ACM模式,输入m为物品数横轴,n为重量,作为纵轴,矩阵尺寸应为mx(n+1),因为n多出了需要考虑重量是0的情况。

m, n = map(int, input().split())weights = list(map(int, input().split()))
values = list(map(int, input().split()))
#initialize
dp = [[0]*(n+1) for _ in range(m)]
#when n = 0, dp[i][0] = 0
for j in range(n+1):if weights[0]<=j:dp[0][j] = values[0]else:dp[0][j] = 0
def bag():for i in range(1,m):for j in range(1,n+1):if j<weights[i]:dp[i][j] = dp[i-1][j]else:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i]]+values[i])return dp[m-1][n]
print(bag())

01背包问题,你该了解这些! 滚动数组  

  1. 确定dp数组的定义:在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
  2. 一维dp数组的递推公式:两种可能,一种是不放入物品i,及自身的价值dp[j],一种是放入物品i,dp[j-weights[i]]+values[i],所以dp[j] = max(dp[j], dp[j-weigts[i]]+values[i])
  3. 一维dp数组如何初始化

    关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

    dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

    那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

    看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

    这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

    那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了

  4. 一维dp数组遍历顺序:从后向前,避免重复添加上一层数量,先遍历物品,再遍历背包。
  5. 举例推导dp数组

ACM代码:

m, n = map(int, input().split())
weights = list(map(int, input().split()))
values = list(map(int, input().split()))
#initialize
dp = [0]*(n+1) #1-dimensional array
def bag():for i in range(m):for j in range(n,weights[i]-1, -1):dp[j] = max(dp[j], dp[j-weights[i]]+values[i])return dp[n]
print(bag())

416. 分割等和子集 

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

解题思路:

本题可以使用回溯或背包解答。可以将其看作一个nums,如果该数组能得到一个sum(nums)//2的子集,该数组可以拆成两个一样的子数集且和相等,return True。

类似于背包问题的解题思路,

1. 确认dp数组的定义:dp[j]当容量为j时的最大数之和(最大价值),需要注意的是,这里物品i和价值均为nums[i].

2. 一维dp推导公式:dp[j] = max(dp[j], dp[j-weights[i]]+values[i])

3. 一维dp数组如何初始化:dp[0] = 0

4. 一维dp数组遍历顺序:从后向前,避免重复添加上一层数量,先遍历物品,再遍历背包

5. 举例推导dp数组

代码:

class Solution:def canPartition(self, nums: List[int]) -> bool:if sum(nums)%2 != 0:return Falsetarget = sum(nums)//2#target is the largest bagweightdp = [0]*(target+1)for i in range(len(nums)):for j in range(target, nums[i]-1, -1):dp[j] = max(dp[j], dp[j-nums[i]]+nums[i])if dp[target] == target:return Truereturn False

这篇关于代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949910

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499