关系(五)利用python绘制连接散点图

2024-04-30 17:12

本文主要是介绍关系(五)利用python绘制连接散点图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关系(五)利用python绘制连接散点图

连接散点图(Connected Scatterplot)简介

1

连接散点图(点线图)是折线图的一种,与散点图类似。但添加了按数据点出现顺序的连线,以此来表示两个变量的顺序关系。因此连接散点图既能分析相关性,也可分析趋势性。

快速绘制

  1. 基于seaborn

    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    np.random.seed(0)# 自定义数据
    df = pd.DataFrame({'x': range(1,10),'y': np.random.randn(9)*80+range(1,10)})# 利用lineplot快速绘制连接散点图
    sns.lineplot(x='x',y='y',data=df,marker='o')plt.show()
    

    2

  2. 基于matplotlib

    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    np.random.seed(0)# 自定义数据
    df = pd.DataFrame({'x': range(1,10),'y': np.random.randn(9)*80+range(1,10)})# 利用plot快速绘制连接散点图
    plt.plot(df['x'], df['y'], linestyle='-', marker='o')plt.show()
    

    3

    定制多样化的连接散点图

    自定义连接散点图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

    通过seaborn绘制多样化的连接散点图

    seaborn主要利用lineplot绘制连接散点图,可以通过seaborn.lineplot了解更多用法

    import seaborn as sns
    import matplotlib.pyplot as plt# 自定义数据
    x = [1, 2, 3, 4, 5]
    y = [5, 3, 7, 4, 8]# 初始化布局
    plt.figure(figsize=(6, 4))# 带圆圈标记的实线
    sns.lineplot(x=x, y=y, linestyle='-', marker='o', markersize=8, label='Solid Line', color='blue') # 带方形标记的虚线
    sns.lineplot(x=x, y=[i + 1 for i in y], linestyle='--', marker='s', markersize=8, label='Dashed Line', color='green') # 带有向上三角形标记的点划线
    sns.lineplot(x=x, y=[i + 2 for i in y], linestyle='-.', marker='^', markersize=20, label='Dash-dot Line', color='purple') plt.legend(loc='upper left')
    plt.show()
    

    4

通过matplotlib绘制多样化的连接散点图

matplotlib主要利用plot绘制连接散点图,可以通过matplotlib.pyplot.plot了解更多用法

  1. 自定义连接散点图

    import matplotlib.pyplot as plt# 自定义数据
    x = [1, 2, 3, 4, 5]
    y = [5, 3, 7, 4, 8]# 初始化布局
    plt.figure(figsize=(6, 4))# 带圆圈标记的实线
    plt.plot(x, y, linestyle="-", marker="o", markersize=8, label='Solid Line', color='blue')# 带方形标记的虚线
    plt.plot(x, [i + 1 for i in y], linestyle='--', marker='s', markersize=8, label='Dashed Line', color='green') # 带有向上三角形标记的点划线
    plt.plot(x, [i + 2 for i in y], linestyle='-.', marker='^', markersize=20, label='Dash-dot Line', color='purple') plt.legend(loc='upper left')
    plt.show()
    

    5

  2. 绘制多个变量的演变过程

    import pandas as pd
    import matplotlib.pyplot as plt# 导入数据
    df = pd.read_csv("https://raw.githubusercontent.com/holtzy/data_to_viz/master/Example_dataset/5_OneCatSevNumOrdered.csv")# 数据清洗
    df = df.loc[(df.name=="Ashley") | (df.name=="Amanda")]
    df = df.loc[(df.sex=="F") & (df.year>1970)]
    df = pd.pivot_table(df, values='n', index=['year'], columns=['name'])df.head()
    

    6

    # 初始化布局
    plt.figure(figsize=(10, 10))# 连接散点图
    plt.plot(df.Amanda, df.Ashley, '-', marker='o')# 为每个点添加年份(避免过度堆积,每隔三个点添加年份)
    for line in range(0, df.shape[0], 3):plt.annotate(df.index[line], (df.Amanda.iloc[line], df.Ashley.iloc[line]+300 ) ,va='bottom',ha='center')# 添加轴标签
    plt.xlabel('Amanda')
    plt.ylabel('Ashley')plt.show()
    

    可以看到由1971年到2013年,Amanda和Ashley名字的人数先增多后下降

    7

总结

以上通过seaborn的lineplot和matplotlib的plot快速绘制连接散点图,并通过修改参数或者辅以其他绘图知识自定义各种各样的连接散点图来适应相关使用场景。

共勉~

这篇关于关系(五)利用python绘制连接散点图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949446

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、