YOLOv8+bytetrack实现多目标追踪

2024-04-30 16:12

本文主要是介绍YOLOv8+bytetrack实现多目标追踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. bytetrack简介

ByteTrack是一种基于检测的目标追踪算法,它在YOLOv8检测器的基础上进行了改进,实现了更高效的目标追踪,具有简单、高效和通用的特点。相较于传统的多目标跟踪方法,ByteTrack不依赖于ReID模型,而是通过关联每个检测框来进行跟踪。这种方法可以有效地解决低分检测框被简单丢弃的问题,从而减少漏检和碎片化轨迹的情况。

ByteTrack算法流程如下:首先,使用目标检测器对当前帧进行检测,得到一系列候选目标框。然后,利用卡尔曼滤波对目标框进行预测,并利用匈牙利算法进行数据关联,将检测框与历史轨迹进行匹配。对于得分较高的目标框,直接与历史轨迹匹配;对于得分较低的目标框,则与第一次没有匹配上的轨迹进行匹配,用于检测目标遮挡的情形。

为了实现高效的实时多目标跟踪,ByteTrack还采用了一些优化策略。例如,对轨迹进行分类,避免在代码阅读时出现混淆的情形;同时,对于连续两帧都未匹配上的轨迹,将其标记为即将删除的轨迹,从而及时清理无效轨迹。

在实际应用中,ByteTrack能够轻松应用到各种多目标跟踪框架中,并取得显著的性能提升。在MOT17测试集上,ByteTrack实现了80.3 MOTA、77.3 IDF1和63.1 HOTA等优异性能指标,同时在单个V100 GPU上运行速度达到了30 FPS。这表明ByteTrack具有高效、准确和实时性强的特点,能够满足实际应用的需求。

2. 实现流程

使用了 YOLOv8 和 ByteTrack 进行目标识别与跟踪。实现流程:如下面代码所示

  1. 导入必要的库:

    • cv2:用于处理视频和图像。
    • os:用于处理文件路径。
    • ultralytics.YOLO:用于加载 YOLOv8 模型进行目标检测和跟踪。
  2. 加载 YOLOv8 模型:

    model = YOLO(r'track/pt/best.pt')
    

    这行代码加载了预训练的 YOLOv8 模型,该模型用于目标检测和跟踪。

  3. 设置输入视频文件夹路径和输出视频文件夹路径:

    input_video_folder = r"track/input"
    output_video_folder = r"track/output"
    

    这里定义了输入视频文件夹路径和输出视频文件夹路径。

  4. 获取视频文件列表并按文件名排序:

    video_files = [file for file in os.listdir(input_video_folder) if file.endswith(".mp4")]
    video_files.sort()
    

    这行代码获取指定文件夹中所有以 .mp4 结尾的视频文件,并按文件名排序。

  5. 循环处理每个视频文件:

    for video_file in video_files:
    

    这是一个循环,遍历所有视频文件。

  6. 打开视频文件并设置输出视频路径:

    input_video_path = os.path.join(input_video_folder, video_file)
    output_video_path = os.path.join(output_video_folder, video_file)
    

    这里根据当前视频文件构建输入视频文件路径和输出视频文件路径。

  7. 获取视频的帧率和尺寸:

    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    

    这行代码获取视频的帧率和尺寸。

  8. 创建视频写入对象:

    out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
    

    这行代码创建了一个视频写入对象,用于写入处理后的视频帧。

  9. 循环处理视频的每一帧:

    while cap.isOpened():
    

    这是一个循环,用于处理视频的每一帧。

  10. 读取视频的下一帧:

    success, frame = cap.read()
    

    这行代码读取视频的下一帧,并将帧存储在变量 frame 中。

  11. 使用 YOLOv8 模型进行目标检测和跟踪:

    results = model.track(frame, tracker="ultralytics/cfg/trackers/bytetrack.yaml", persist=True)
    

    这行代码使用 YOLOv8 模型对当前帧进行目标检测和跟踪,使用 ByteTrack 跟踪器,并设置 persist=True 以保持跟踪。

  12. 将检测和跟踪结果可视化并写入输出视频:

    annotated_frame = results[0].plot()
    out.write(annotated_frame)
    

    这行代码将检测和跟踪结果可视化在当前帧上,并将结果写入输出视频。

  13. 显示处理后的视频帧:

    cv2.imshow("YOLOv8 Tracking", annotated_frame)
    

    这行代码显示处理后的视频帧。

  14. 检测是否按下 ‘q’ 键:

    if cv2.waitKey(1) & 0xFF == ord("q"):break
    

    如果用户按下键盘上的 ‘q’ 键,则跳出循环。

  15. 释放视频捕获对象和视频写入对象:

    cap.release()
    out.release()
    

    这行代码释放视频捕获对象和视频写入对象,释放视频资源。

  16. 关闭显示窗口:

    cv2.destroyAllWindows()
    

    这行代码关闭 OpenCV 显示的所有窗口。

  17. 显示处理完成信息:

    print("所有视频处理完成!")
    

    这行代码打印输出所有视频处理完成的消息。

3. 总体代码:

import cv2
from ultralytics import YOLO
import os# Load the YOLOv8 model
model = YOLO(r'track/pt/best.pt')# 输入视频文件夹路径和输出视频文件夹路径
input_video_folder = r"track/input"
output_video_folder = r"track/output"# 获取视频文件夹中的所有视频文件名,并按文件名排序
video_files = [file for file in os.listdir(input_video_folder) if file.endswith(".mp4")]
video_files.sort()# 循环处理每个视频文件
for video_file in video_files:# 打开视频文件input_video_path = os.path.join(input_video_folder, video_file)cap = cv2.VideoCapture(input_video_path)# 获取输出视频文件名output_video_path = os.path.join(output_video_folder, video_file)# 获取视频的帧率和尺寸fps = cap.get(cv2.CAP_PROP_FPS)width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 创建视频写入对象fourcc = cv2.VideoWriter_fourcc(*'mp4v')out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))# Loop through the video frameswhile cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 tracking on the frame, persisting tracks between framesresults = model.track(frame, tracker="ultralytics/cfg/trackers/bytetrack.yaml", persist=True)# Visualize the results on the frameannotated_frame = results[0].plot()# Write the annotated frame to the output videoout.write(annotated_frame)# Display the annotated framecv2.imshow("YOLOv8 Tracking", annotated_frame)# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture and video write objectscap.release()out.release()# Close the display window
cv2.destroyAllWindows()print("所有视频处理完成!")

这篇关于YOLOv8+bytetrack实现多目标追踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949324

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S