YOLOv8+bytetrack实现多目标追踪

2024-04-30 16:12

本文主要是介绍YOLOv8+bytetrack实现多目标追踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. bytetrack简介

ByteTrack是一种基于检测的目标追踪算法,它在YOLOv8检测器的基础上进行了改进,实现了更高效的目标追踪,具有简单、高效和通用的特点。相较于传统的多目标跟踪方法,ByteTrack不依赖于ReID模型,而是通过关联每个检测框来进行跟踪。这种方法可以有效地解决低分检测框被简单丢弃的问题,从而减少漏检和碎片化轨迹的情况。

ByteTrack算法流程如下:首先,使用目标检测器对当前帧进行检测,得到一系列候选目标框。然后,利用卡尔曼滤波对目标框进行预测,并利用匈牙利算法进行数据关联,将检测框与历史轨迹进行匹配。对于得分较高的目标框,直接与历史轨迹匹配;对于得分较低的目标框,则与第一次没有匹配上的轨迹进行匹配,用于检测目标遮挡的情形。

为了实现高效的实时多目标跟踪,ByteTrack还采用了一些优化策略。例如,对轨迹进行分类,避免在代码阅读时出现混淆的情形;同时,对于连续两帧都未匹配上的轨迹,将其标记为即将删除的轨迹,从而及时清理无效轨迹。

在实际应用中,ByteTrack能够轻松应用到各种多目标跟踪框架中,并取得显著的性能提升。在MOT17测试集上,ByteTrack实现了80.3 MOTA、77.3 IDF1和63.1 HOTA等优异性能指标,同时在单个V100 GPU上运行速度达到了30 FPS。这表明ByteTrack具有高效、准确和实时性强的特点,能够满足实际应用的需求。

2. 实现流程

使用了 YOLOv8 和 ByteTrack 进行目标识别与跟踪。实现流程:如下面代码所示

  1. 导入必要的库:

    • cv2:用于处理视频和图像。
    • os:用于处理文件路径。
    • ultralytics.YOLO:用于加载 YOLOv8 模型进行目标检测和跟踪。
  2. 加载 YOLOv8 模型:

    model = YOLO(r'track/pt/best.pt')
    

    这行代码加载了预训练的 YOLOv8 模型,该模型用于目标检测和跟踪。

  3. 设置输入视频文件夹路径和输出视频文件夹路径:

    input_video_folder = r"track/input"
    output_video_folder = r"track/output"
    

    这里定义了输入视频文件夹路径和输出视频文件夹路径。

  4. 获取视频文件列表并按文件名排序:

    video_files = [file for file in os.listdir(input_video_folder) if file.endswith(".mp4")]
    video_files.sort()
    

    这行代码获取指定文件夹中所有以 .mp4 结尾的视频文件,并按文件名排序。

  5. 循环处理每个视频文件:

    for video_file in video_files:
    

    这是一个循环,遍历所有视频文件。

  6. 打开视频文件并设置输出视频路径:

    input_video_path = os.path.join(input_video_folder, video_file)
    output_video_path = os.path.join(output_video_folder, video_file)
    

    这里根据当前视频文件构建输入视频文件路径和输出视频文件路径。

  7. 获取视频的帧率和尺寸:

    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    

    这行代码获取视频的帧率和尺寸。

  8. 创建视频写入对象:

    out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
    

    这行代码创建了一个视频写入对象,用于写入处理后的视频帧。

  9. 循环处理视频的每一帧:

    while cap.isOpened():
    

    这是一个循环,用于处理视频的每一帧。

  10. 读取视频的下一帧:

    success, frame = cap.read()
    

    这行代码读取视频的下一帧,并将帧存储在变量 frame 中。

  11. 使用 YOLOv8 模型进行目标检测和跟踪:

    results = model.track(frame, tracker="ultralytics/cfg/trackers/bytetrack.yaml", persist=True)
    

    这行代码使用 YOLOv8 模型对当前帧进行目标检测和跟踪,使用 ByteTrack 跟踪器,并设置 persist=True 以保持跟踪。

  12. 将检测和跟踪结果可视化并写入输出视频:

    annotated_frame = results[0].plot()
    out.write(annotated_frame)
    

    这行代码将检测和跟踪结果可视化在当前帧上,并将结果写入输出视频。

  13. 显示处理后的视频帧:

    cv2.imshow("YOLOv8 Tracking", annotated_frame)
    

    这行代码显示处理后的视频帧。

  14. 检测是否按下 ‘q’ 键:

    if cv2.waitKey(1) & 0xFF == ord("q"):break
    

    如果用户按下键盘上的 ‘q’ 键,则跳出循环。

  15. 释放视频捕获对象和视频写入对象:

    cap.release()
    out.release()
    

    这行代码释放视频捕获对象和视频写入对象,释放视频资源。

  16. 关闭显示窗口:

    cv2.destroyAllWindows()
    

    这行代码关闭 OpenCV 显示的所有窗口。

  17. 显示处理完成信息:

    print("所有视频处理完成!")
    

    这行代码打印输出所有视频处理完成的消息。

3. 总体代码:

import cv2
from ultralytics import YOLO
import os# Load the YOLOv8 model
model = YOLO(r'track/pt/best.pt')# 输入视频文件夹路径和输出视频文件夹路径
input_video_folder = r"track/input"
output_video_folder = r"track/output"# 获取视频文件夹中的所有视频文件名,并按文件名排序
video_files = [file for file in os.listdir(input_video_folder) if file.endswith(".mp4")]
video_files.sort()# 循环处理每个视频文件
for video_file in video_files:# 打开视频文件input_video_path = os.path.join(input_video_folder, video_file)cap = cv2.VideoCapture(input_video_path)# 获取输出视频文件名output_video_path = os.path.join(output_video_folder, video_file)# 获取视频的帧率和尺寸fps = cap.get(cv2.CAP_PROP_FPS)width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 创建视频写入对象fourcc = cv2.VideoWriter_fourcc(*'mp4v')out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))# Loop through the video frameswhile cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 tracking on the frame, persisting tracks between framesresults = model.track(frame, tracker="ultralytics/cfg/trackers/bytetrack.yaml", persist=True)# Visualize the results on the frameannotated_frame = results[0].plot()# Write the annotated frame to the output videoout.write(annotated_frame)# Display the annotated framecv2.imshow("YOLOv8 Tracking", annotated_frame)# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture and video write objectscap.release()out.release()# Close the display window
cv2.destroyAllWindows()print("所有视频处理完成!")

这篇关于YOLOv8+bytetrack实现多目标追踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949324

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too