技术解析Google文件系统GFS

2024-04-30 15:48

本文主要是介绍技术解析Google文件系统GFS,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Google文件系统(Google File System,GFS)是一个大型的分布式文件系统。它为Google云计算提供海量存储,并且与Chubby、MapReduce以及Bigtable等技术结合十分紧密,处于所有核心技术的底层。

系统架构

  GFS的系统架构如图所示。GFS将整个系统的节点分为三类角色:Client(客户端)、Master(主服务器)和Chunk Server(数据块服务器)。Client是GFS提供给应用程序的访问接口,它是一组专用接口,不遵守POSIX规范,以库文件的形式提供。应用程序直接调用这些库函数,并与该库链接在一起。Master是GFS的管理节点,在逻辑上只有一个,它保存系统的元数据,负责整个文件系统的管理,是GFS文件系统中的“大脑”。Chunk Server负责具体的存储工作。数据以文件的形式存储在Chunk Server上,Chunk Server的个数可以有多个,它的数目直接决定了GFS的规模。GFS将文件按照固定大小进行分块,默认是64MB,每一块称为一个Chunk(数据块),每个Chunk都有一个对应的索引号(Index)。

  GFS实现了控制流和数据流的分离。Client和Master之间只有控制流,没有数据流,极大地降低了Master的负载。Client和Chunk Server之间直接传输数据流,同时由于文件被分为多个Chunk进行分布式存储,Client可以同时访问多个Chunk Server,从而使整个系统的IO高度并行,整体性能得到提高

GFS的系统架构

刘鹏《云计算(第二版)》

 

①~⑤是控制流,⑥是数据流

Client: 应用程序的访问接口

Master(主服务器):管理节点在逻辑上只有一个,保存系统的元数据(Metadata,描述数据的数据),负责整个文件系统的管理。

Chunk Server(数据库服务器):负责具体的存储工作。数据以文件的形式存储在Chunk Server上。

 

架构设计成这样的好处是:

1、Client和Master之间只有控制流(①~⑤),没有数据流,因此降低了Master的负载因为控制流只需传送指令和状态,数据量小

2、Client与Chunk Server之间直接传输数据流,同时由于文件被分成多个chunk进行分布式存储,因此Client可以同时并行访问多个Chunk Server,从而让系统的I/O并行度提高

 

GFS的特点:

1、采用中心服务器模式

好处是:(1)可以方便的增加Chunk Server

    (2)Master可以掌握系统内所有Chunk Server的情况,方便进行负载均衡

    (3)不存在元数据的一致性问题(因为只有一个中心server,所以云数据也只有一份

2、不缓存数据(没有系统cache

好处是:(1)文件操作大部分是流式读写,不存在大量重复的读写,因此即使使用cache对系统性能的提高也不大

    (2)Chunk Server上的数据存储在本地文件系统上(Linux File System),若真的出现频繁存取,那么本地文件系统的cache也可以支持

    (3)若建立系统cache,那么cache中的数据与Chunk Server中的数据的一致性很难保证

 

思考:

GFS采用中心服务器的模式,该模式的最大优点是便于管理,因为中心服务器可以获知所有子服务器的状态,因而可以很方便的得知各个子服务器的负载状况等。但是这一模式也有一个比较致命的缺点,那就是单点故障。当单点故障发生在中心服务器时,将导致整个系统的不可用。

不过,按照上述描述,GFS的中心服务器只是逻辑上是一个,因此可以想象,其实GFS的Manster还是有后备机制的,因此GFS比较像伪集中式管理

 

这篇关于技术解析Google文件系统GFS的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949274

相关文章

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分