【统计推断】-01 抽样原理之(三)

2024-04-30 15:04
文章标签 统计 原理 01 抽样 推断

本文主要是介绍【统计推断】-01 抽样原理之(三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、说明
  • 二、抽样分布
  • 三 均值抽样分布
    • 3.1 有限母体无放回抽样
    • 3.2 有限母体有放回抽样
    • 3.3 无限母体
  • 四、比例抽样分布
  • 五、和差抽样分布

一、说明

   上文中叙述母体和抽样的设计;以及抽样分布的概念,本篇将这种关系定量化,专门针对抽样的指标参数和母体参数的对应关系,这是我们以后做检验的基础。

二、抽样分布

   考虑从给定的母体中抽取容量为N的所有可能样本(抽样时无论放回和不放回)。对于每一个样本,我们可以计算出某个统计量(如均值、标准差)的值,不同样本得到的统计量(均值或标准差)不同,用这种方法得到的统计量分布称为抽样分布。
抽样分布有多种,我们这里重点介绍几个典型抽样分布.

  •    均值抽样分布。
  •    比例抽样分布。
  •    和(差)抽样分布。

三 均值抽样分布

   均值抽样是最常见的抽样。我们知道抽样的目的是从若干个局部,推演出全局的过程。推而广之,从个别是不是属于一个全局的概率。这其实有一个先验前提,母体基本情况是确定的。因此,预先知道母体的基本信息有:

  •    有限母体
  •    无限母体
    从抽样方式上,又分为:
  •    无放回抽样
  •    有放回抽样
    下面我们将分别叙述。

3.1 有限母体无放回抽样

   假定一个有限母体,容量为 N p N_p Np.母体均值和方差为: μ , σ \mu,\sigma μ,σ。抽样的容量为N,均值方差记号为 μ x ˉ , σ x ˉ \mu_{\bar{x}},\sigma_{\bar{x}} μxˉ,σxˉ,那么,抽样的均值和方差与母体的均值和方差存在下列关系:
在这里插入图片描述
   以上关系我们给出一个实例说明:
   给出一个母体 { 2 , 3 , 6 , 8 , 11 } \{2,3,6,8,11\} {2,3,6,8,11},从母体中有放回地抽样,抽样的容量是2;

   如何获取母体的均值和方差
μ = 2 + 3 + 6 + 8 + 11 5 = 6 σ 2 = ( 2 − 6 ) 2 + ( 3 − 6 ) 2 + ( 6 − 6 ) 2 + ( 8 − 6 ) 2 + ( 11 − 6 ) 2 5 = 10.8 \mu = \frac{2+3+6+8+11}{5}=6 \\ \sigma^2 = \frac{(2-6)^2+(3-6)^2+(6-6)^2+(8-6)^2+(11-6)^2}{5}=10.8 μ=52+3+6+8+11=6σ2=5(26)2+(36)2+(66)2+(86)2+(116)2=10.8
σ = 3.29 \sigma=3.29 σ=3.29
   如何获取抽样的均值和方差
   从总体中抽取容量为2的样本,而且是无放回的,这说明什么?

  •    当抽出一个数以后,不放回再抽取第二个,说明两个数不能一样。
  •    当抽取出(a,b)和(b,a)属于同一个抽样。
    这样的抽样共有 C 5 2 C^2_5 C52种,分别是:
Column 1Column 2均值
232.5
2.64
285
2116.5
3.64.5
385.5
3117
687
6118.5
8119.5

样本均值为:
μ x ˉ = 2.5 + 4 + 5 + 6.5 + 4.5 + 5.5 + 7 + 7 + 8.5 + 9.5 10 = 6 \mu_{\bar{x}}=\frac{2.5+4+5+6.5+4.5+5.5+7+7+8.5+9.5}{10}=6 μxˉ=102.5+4+5+6.5+4.5+5.5+7+7+8.5+9.5=6
样本方差:
在这里插入图片描述
在这里插入图片描述
   因此,符合我们给出的(1)式。

3.2 有限母体有放回抽样

   有限母体和抽样中,母体均值和抽样的关系。
μ x ˉ = μ σ x ˉ = σ N \mu_{\bar{x}}=\mu \; \; \; \; \; \; \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}} μxˉ=μσxˉ=N σ (2)

在这里插入图片描述

3.3 无限母体

   对于无限的母体,它和有限母体的有放回抽样是一样的,
无限的母体的抽样中,母体均值和抽样的关系。
μ x ˉ = μ σ x ˉ = σ N \mu_{\bar{x}}=\mu \; \; \; \; \; \; \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}} μxˉ=μσxˉ=N σ (3)

   好了,我们以上对均值的抽样做出完整解释。下面请看比例抽样是个什么概念。

四、比例抽样分布

   关键词: sampling distribution of proportions
   有一类事物,总是能归结到某事物发生或不发生的概率。这是一个二分法问题,比如,进入某商店的客人中,购买商品的顾客比例。这种问题可以归结到抛硬币问题,或者二项式分布问题。
   总体设定:将总体看成是0-1分布,均值和方差为:
μ = p ; σ 2 = p ( 1 − p ) \mu=p; \; \; \sigma^2=p(1-p) μ=p;σ2=p(1p)
   那么,抽样的均值和方差分别是:
μ p = p ; σ p = p ( 1 − p ) N \mu_p=p; \; \; \sigma_p=\sqrt{ \frac{p(1-p)}{N}} μp=p;σp=Np(1p) (3)
   这个结论和有限,有放回抽样的结果一样的。

五、和差抽样分布

和差抽样分布,是针对;对两个母体分别抽样,然后估算两组抽样中指标数(如均值)和、差的统计运算。因为正寻找最合适的实例,暂时停止,做个记号,日后完善。
(在下文叙述}

这篇关于【统计推断】-01 抽样原理之(三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949182

相关文章

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源