MATLAB中功率谱密度计算pwelch函数使用详解

2024-04-30 11:20

本文主要是介绍MATLAB中功率谱密度计算pwelch函数使用详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MATLAB中功率谱密度计算pwelch函数使用详解

目录

前言

一、pwelch函数简介

二、pwelch函数参数说明

三、pxx = pwelch(x)示例

四、[pxx,f]=pwelch(x,window,noverlap,nfft,fs)示例

四、[pxx,f] = pwelch(x,window,noverlap,nfft,fs,freqrange,spectrumtype)示例

五、多通道功率谱估计

六、参考资料

总结


前言

        详细介绍MATLAB中功率谱密度计算pwelch函数的使用方法,介绍如何使用该函数及输入各个参数的含义,手把手用代码教你学习pwelch函数,文中附有代码,足够pwelch函数入门了。


提示:以下是本篇文章正文内容,希望能帮助到各位,转载请附上链接。

一、pwelch函数简介

         MATLAB中的pwelch函数是一种用于快速估计信号功率谱密度的工具,也可以计算信号的功率谱,通过阅读该函数使用说明会发现功率谱和功率谱密度是两个不同的概念,要注意一下,在很多教材上都称功率谱和功率谱密度是同一个概念,这是错的,不要被误导。

        pwelch函数可以只对一个信号进行功率谱密度估计,也可以同时对多个信号进行功率谱密度估计,简而言之,就是其输入信号那个参数可以是向量,也可以是矩阵。

二、pwelch函数参数说明

        函数说明文档里面pwelch函数调用的句话格式很多,我们不用关心那么多,关心如下几个格式和默认参数是怎么一回事就可以了。

pxx = pwelch(x)

[ pxx, f ] = pwelch(x,window,noverlap,nfft,fs)

[ pxx, f ] = pwelch(x,window,noverlap,nfft,fs,freqrange)

[ pxx, f ] = pwelch(x,window,noverlap,nfft,fs,freqrange,spectrumtype)

x--------输入信号,指定为行向量或列向量,或矩阵。 如果 x 是矩阵,则其被视为独立通道

Window--------窗口,指定为行向量或列向量或整数。 如果 window 是一个向量,pwelch 将 x 划分为长度等于 window 长度的重叠段,然后将每个信号段与 window 中指定的向量相乘。 如果window是整数,则将pwelch分成长度等于整数值的段,并使用等长的汉明窗。 如果x的长度不能精确地划分为具有noverlap数量的重叠样本的整数段,则x被相应地截断。 如果将 window 指定为空,则使用默认的 Hamming 窗来获取 x 的 8 段,其中具有 noverlap 重叠样本。

noverlap----------重叠样本的数量,指定为小于窗口长度的正整数。 如果省略 noverlap 或 noverlap 指定为空,则使用一个值来获得段之间 50% 的重叠,即默认50%重叠

nfft--------DFT 点数,指定为正整数。 对于实值输入信号 x(PSD 估计值),如果 nfft 为偶数,则 pxx 的长度为 (nfft/2 + 1);如果 nfft 为奇数,则 pxx 的长度为 (nfft + 1)/2。 对于复值输入信号 x,PSD 估计的长度始终为 nfft。 如果 nfft 指定为空,则使用默认的 nfft。如果 nfft 大于Window长度,则数据用零填充。 如果 nfft 小于Window长度,则使用 datawrap包装该段,使长度等于nfft。建议两者相等。

fs-------采样频率,指定为正标量。 采样率是单位时间内的采样数。 如果时间单位是秒,那么采样率的单位是Hz。

freqrange--------------PSD 估计的频率范围,指定为“单边”、“双边”或“中心”之一。 对于实值信号,默认值为“单侧”;对于复值信号,默认值为“双侧”。 每个选项对应的频率范围为

        'oneside' — 返回实值输入信号 x 的单侧 PSD 估计。 如果 nfft 为偶数,则 pxx 的长度为 nfft/2 + 1, 如果 nfft 为奇数,则 pxx 的长度为 (nfft + 1)/2,间隔为 [0,π) rad/sample。 当 fs 可选指定时,对于偶数和奇数长度 nfft,相应的间隔分别为 [0,fs/2] 周期/单位时间和 [0,fs/2) 周期/单位时间。该函数将除 0 和奈奎斯特频率之外的所有频率的功率乘以 2,以保持总功率不变。

        'twoside' - 返回实值或复值输入 x 的两侧 PSD 估计值。 在这种情况下,pxx 的长度为 nfft,并在区间 [0,2π) rad/sample 上计算。 当指定fs时,间隔为[0,fs)周期/单位时间。

        'centered' - 返回实值或复值输入 x 的中心两侧 PSD 估计值。 在这种情况下,pxx 的长度为 nfft,并且在偶数长度 nfft 的间隔 (–π,π] rad/sample 和奇数长度 nfft 的 (–π,π) rad/sample 区间内计算。当 fs 可选地指定时,相应的对于偶数和奇数长度 nfft,间隔分别为 (–fs/2, fs/2] 周期/单位时间和 (–fs/2, fs/2) 周期/单位时间。

spectrumtype------------功率谱类型,指定为“psd”或“power”之一。 默认“psd”,将返回功率谱密度。 指定“power”可通过窗口的等效噪声带宽来缩放 PSD 的每个估计值。 使用“power”选项可以获得每个频率的功率估计值。

三、pxx = pwelch(x)示例

        创建一个角频率为π/4 rad的正弦波,外加N(0,1)白噪声。信号的长度是320个样本。得到其Welch PSD估计。

clc;
clear;
close all;rng defaultn = 0:319;
x = cos(pi/4*n)+randn(size(n));pxx = pwelch(x);

可见,默认横轴是归一化的角频率,纵轴是取了10log10( )的dB功率谱密度。

关于归一化频率,参考:滤波器设计中的频率归一化问题_滤波器归一化频率-CSDN博客

解释如下:

        信号处理工具箱中经常使用的频率是Nyquist频率,它被定义为采样频率的一半,在滤波器的结束选择和设计当中的截止频率均使用Nyquist频率进行归一化处理。

   例如,对于一个采样频率为1000Hz的系统,300Hz的归一化即为300/500=0.6。归一化频率的范围在[0,1]之间。如果要将归一化频率转换为角频率,则将归一化频率乘以pi;如果将归一化频率转换成Hz,则将归一化频率乘以采样频率的一半。

        采样率的一半是最高频率,认为是1,那么真实频率和最高频率的比值就是归一化频率!也叫数字频率。
     将信号分成长度为nsc=⌊Nx/4.5⌋。这个动作相当于将信号分成尽可能长的段,以获得接近但不超过8个重叠50%的段。使用汉明窗口显示各部分。指定相邻部分之间50%的重叠

要计算FFT,使用max(256,2^p),其中p=[log2nsc⌉。

Nx = length(x);
nsc = floor(Nx/4.5);
nov = floor(nsc/2);
nff = max(256,2^nextpow2(nsc));t = pwelch(x,hamming(nsc),nov,nff);maxerr = max(abs(abs(t(:))-abs(pxx(:))))

默认分成8段,每段的长度为Nx/4.5=320/4.5=71.1111,舍去多余的数据,分段长度为71,并用同等长度的汉明窗;重叠长度为50%,则nov=floor(71/2)=35;DFT的点数取每段长度最接近的2的整数次幂和256的最大值,最接近的2的整数次幂是比每段长度长的最接近的2的整数次幂,所以DFT计算的时候如果DFT点数大于每段长度。会自动补0。

对于实值信号,默认值为“单侧”PSD,所以计算DFT点数为256,估计的PSD长度只有256/2+1=129点的长度。

四、[pxx,f]=pwelch(x,window,noverlap,nfft,fs)示例

        创建一个由100Hz正弦波和加性N(0,1)白噪声组成的信号。采样率为1khz,信号持续时间为5秒。使用500个样本和300个重叠样本的段长度,使用500个DFT点。

clc;
clear;
close all;rng defaultfs = 1000;
t = 0:1/fs:5-1/fs;
x = cos(2*pi*100*t) + randn(size(t));[pxx,f] = pwelch(x,500,300,500,fs);plot(f,10*log10(pxx))xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')

sum(abs(x).^2)/length(x) %信号功率
P = fs/2/length(pxx) * (sum(pxx) - 0.5*(pxx(1) + pxx(end))) %梯形法积分

验证功率,对功率谱密度积分发现和信号功率几乎相等。

增大点数

clc;
clear;
close all;rng defaultfs = 10000;
t = 0:1/fs:5-1/fs;
x = cos(2*pi*100*t) + randn(size(t));[pxx,f] = pwelch(x,5000,3000,5000,fs);plot(f,10*log10(pxx))xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')sum(abs(x).^2)/length(x) %信号功率
P = fs/2/length(pxx) * (sum(pxx) - 0.5*(pxx(1) + pxx(end))) %梯形法积分

增大段长度,会发现功率谱估计的准,功率谱密度积分的值更接近信号的功率。

四、[pxx,f] = pwelch(x,window,noverlap,nfft,fs,freqrange,spectrumtype)示例

         创建一个由100Hz正弦波和加性N(0,1)白噪声组成的信号。采样率为1khz,信号持续时间为5秒。使用500个样本和300个重叠样本的段长度,使用500个DFT点。

clc;
clear;
close all;rng defaultfs = 1000;
t = 0:1/fs:10-1/fs;x = cos(2*pi*100*t)+randn(size(t))+1;[pxx,f] = pwelch(x,500,300,500,fs,'centered');plot(f,10*log10(pxx))
xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')
E=sum(abs(x).^2)  %信号能量
P=sum(abs(x).^2)/length(x) %信号功率
P = fs/length(pxx) * (sum(pxx) - 0.5*(pxx(1) + pxx(end))) %梯形法积分�[pxx,f] = pwelch(x,500,300,500,fs,'centered','power');
figure(2)
plot(f,10*log10(pxx))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
grid

使用参数centered得到双边功率谱密度:

使用参数power得到双边功率谱(不是双边功率谱密度):

观察图可知,与信号设置的功率吻合。

取对数画出如下:

        可见,将功率谱密度积分和信号功率相等;观察功率谱图可知,每个频率对应的点显示了该频点的功率大小。

五、多通道功率谱估计

        在加性N(0,1)高斯白噪声中生成由三个正弦波组成的多通道信号的1024个样本。正弦波的频率分别为100、200、300Hz,采样频率为1000Hz。使用Welch的方法估计信号的PSD并绘制它。

clc;
clear;
close all;rng defaultfs = 1000;
t = 0:1/fs:5-1/fs;
f = [100;200;300];
x = cos(2*pi*f*t)' + randn(length(t),3);[pxx,f] = pwelch(x,500,300,500,fs);plot(f,10*log10(pxx));xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')

六、参考资料

Welch’s power spectral density estimate - MATLAB pwelch- MathWorks 中国

https://download.csdn.net/download/m0_66360845/89084990icon-default.png?t=N7T8https://download.csdn.net/download/m0_66360845/89084990


总结

        以上就是今天要讲的内容,本文仅仅简单介绍了功率谱密度(功率谱)绘制函数pwelch函数的使用,希望对各位小伙伴有所帮助。

这篇关于MATLAB中功率谱密度计算pwelch函数使用详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948734

相关文章

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

flask库中sessions.py的使用小结

《flask库中sessions.py的使用小结》在Flask中Session是一种用于在不同请求之间存储用户数据的机制,Session默认是基于客户端Cookie的,但数据会经过加密签名,防止篡改,... 目录1. Flask Session 的基本使用(1) 启用 Session(2) 存储和读取 Se