Matlab|含sop的33节点配电网优化

2024-04-30 09:28

本文主要是介绍Matlab|含sop的33节点配电网优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 主要内容

2 部分代码

3 程序结果

4 下载链接


主要内容

程序以IEEE33节点为例,分析含sop的配电网优化,包括sop有功约束、无功约束和容量约束,非线性部分通过转换为旋转锥约束进行编程,并且包括33节点配电网潮流及对应电压、电流约束、OLTC约束等,程序是对《Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point》方法实现,里面还有更深一些的知识,包括OLTC和CB等部分内容,具体sop部分和文献《考虑分布式电源运行特性的有源配电网智能软开关sop规划方法》一致。

部分代码

%% 定义约束条件
Constraints=[];
%% SOP有功功率限制 (1) 
Constraints=[Constraints,x_p_sop1(1,:)+x_p_sop1(2,:)+x_p_sop1_loss(1,:)+...x_p_sop1_loss(2,:)==0];
Constraints=[Constraints,x_p_sop2(1,:)+x_p_sop2(2,:)+...x_p_sop2_loss(1,:)+x_p_sop2_loss(2,:)==0];
%% CBs操作限制(27、29) 33
Constraints=[Constraints,Q_CB==N_CB*q_CB];
Constraints=[Constraints,N_CB<=5];
Constraints=[Constraints,N_CB>=0];
​
%% 有功功率损耗(33)
f_loss1=sum(r_ij'*x_Iij_square)*delta_T;
Constraints=[Constraints,x_ui_square(1,:)==12.66^2];  %平衡节点每小时电压平方
f_loss2=sum(x_p_sop1_loss)*delta_T;
f_loss3=sum(x_p_sop2_loss)*delta_T;Constraints=[Constraints,x_Iij_square>=0];    
%% sop运行约束%(40,41)Constraints=[Constraints,0.02*sqrt(x_p_sop1(1,:).^2+x_q_sop1(1,:).^2)<=...x_p_sop1_loss(1,:)];%Constraints=[Constraints,(x_p_sop1(2,opt_num)^2+x_q_sop1(2,opt_num)^2)<=...%   2*(x_p_sop1_loss(2,opt_num)/(sqrt(2)*0.02))*(x_p_sop1_loss(2,opt_num)/(sqrt(2)* 0.02))];Constraints=[Constraints,0.02*sqrt(x_p_sop1(2,:).^2+x_q_sop1(2,:).^2)<=...x_p_sop1_loss(2,:)];
%     Constraints=[Constraints,x_p_sop1(1,opt_num)+x_p_sop1(2,opt_num)==0];
​Constraints=[Constraints,0.02*sqrt(x_p_sop2(1,:).^2+x_q_sop2(1,:).^2)<=...x_p_sop2_loss(1,:)];Constraints=[Constraints,0.02*sqrt(x_p_sop2(2,:).^2+x_q_sop2(2,:).^2)<=...x_p_sop2_loss(2,:)];
%     Constraints=[Constraints,x_p_sop2(1,opt_num)+x_p_sop2(2,opt_num)==0];

程序代码标注了和文献公式的对应性,方便学习!

程序结果

4 下载链接

这篇关于Matlab|含sop的33节点配电网优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948486

相关文章

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器