【高校科研前沿】华东师大白开旭教授博士研究生李珂为一作在RSE发表团队最新成果:基于波谱特征优化的全球大气甲烷智能反演技术

本文主要是介绍【高校科研前沿】华东师大白开旭教授博士研究生李珂为一作在RSE发表团队最新成果:基于波谱特征优化的全球大气甲烷智能反演技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章简介

论文名称Developing unbiased estimation of atmospheric methane via machine learning and multiobjective programming based on TROPOMI and GOSAT data(基于TROPOMI和GOSAT数据,通过机器学习和多目标规划实现大气甲烷的无偏估计)

第一作者及通讯作者:李珂(博士研究生);白开旭(教授)

第一作者及通讯作者单位:华东师范大学地理科学学院

文章发表期刊:Remote Sensing of Environment》(中科院1区Top期刊|最新影响因子:13.5)

期刊平均审稿速度:3.3个月

研究内容

1.导读

依托卫星遥感平台实现大气温室气体浓度的快速精准监测,对制定减排目标和落实减排成效具有重要的支撑作用和现实意义。温室气体遥感反演多采用基于辐射传输在线模拟的全物理最优估计算法,其计算成本高且算法限制多,严重制约温室气体浓度的反演效率和成功率。针对该难题,华东师范大学白开旭教授课题组通过正向辐射传输模拟,筛选出Sentinel-5P卫星短波红外谱段的甲烷敏感吸收通道,基于甲烷波谱特征优化策略,发展了一种协同多源卫星数据资料的的大气甲烷浓度智能遥感反演算法(UNMAMO),实现全球甲烷浓度高效制图。

地基验证结果表明,UNMAMO XCH4反演结果与TCCON地基实测数据间具有良好的一致性,相关系数为0.89,均方根误差为16.74 ppb,优于TROPOMI官方反演XCH4产品精度。其中,采用波段比值的反演策略能够显著降低地表反照率、气溶胶和海拔等因素引入的反演误差,反演精度较欧空局官方全物理算法提升了13.92%;同时,数据-机理双驱动的机器学习反演策略精简了迭代优化过程,反演速率较全物理算法提升4800余倍;由于克服了地表形态和迭代次数的约束,有效反演结果的空间覆盖率较欧空局官方产品提升了136%。

2.研究方法

为针对性解决官方业务算法(RemoTeC)计算量大、耗时长、迭代求解过程中限制众多等难题,白开旭教授课题组耦合物理机理与机器学习方法,发展了协同多源卫星数据的全球大气甲烷浓度智能快速反演算法(UNMAMO),主要包括三个步骤(图1):

(1)辐射传输模拟

利用SCIATRAN辐射传输模型精准模拟TROPOMI短波红外波段甲烷与其他干扰信息(如水汽、氧化亚氮、一氧化碳以及气溶胶与地表反照率等)的光谱敏感性,计算光谱相对变化率。

(2)敏感通道筛选

根据辐射传输模拟结果,利用多目标优化策略在数百个TROPOMI高光谱短波红外波段中确定甲烷敏感与非敏感通道,计算每一个敏感通道与相邻非敏感通道的波段比值,作为甲烷反演的关键示踪变量。

(3)机器学习反演

构建数据-机理双驱动的机器学习模型,并加入气象因素、卫星几何角度等关键辅助变量,拟合GOSAT甲烷浓度与TROPOMI波段比值之间的映射关系,实现全球甲烷浓度快速准确制图。

图片

图1|本研究开发了基于机器学习和多目标规划(UNMAMO)方法的无偏甲烷估计流程图

3.研究结果

图2比较了UNMAMO XCH4反演结果与GOSAT和TROPOMI官方产品的空间分布差异。相对于稀疏的GOSAT XCH4反演,TROPOMI-like反演提供了甲烷浓度的大量空间细节,特别地,UNMAMO的有效反演像元数量远超过其他两种官方结果。以GOSAT反演结果为基准,S5P-L2 XCH4低估了2021年2月25日~27日中非地区的甲烷浓度。相比于UNMAMO反演结果,S5P-L2 XCH4在2021年12月1日中国西部和南亚地区存在较多反演数据缺失,这主要是由于亮地表和较高粗糙度导致的反演失败。此外,可以观察到S5P-L2 XCH4反演存在明显的条带效应,而UNMAMO反演则能够较好地克服这一问题,提供了更加平滑的甲烷浓度分布,进一步证实了甲烷波谱特征优化和机器学习反演框架的有效性。

图片

图2|UNMAMO XCH4反演结果与官方产品的空间分布对比

图3显示了典型排放源区域的甲烷浓度空间分布,有效证实了UNMAMO甲烷反演技术在监测全球大型甲烷排放源方面的优势与潜力。其中,在石油/天然气/煤矿开采地区可观察到显著的甲烷异常排放,如美国德克萨斯州和新墨西哥州的二叠纪盆地(图3a)、中国新疆的准东煤矿(图3b)、澳大利亚新南威尔士州的猎人谷煤矿(图3d)、阿尔及利亚的哈西迈萨乌德油田(图3f)等。湿地和水稻田是全球主要的甲烷自然排放源,在中国东部的高密度农业区可观察到明显的甲烷高值区(图3c),在中非等地区的热带湿地也发现甲烷的高值分布(图3e)。上述发现与结果可证实了UNMAMO甲烷反演技术在确定大型甲烷排放源、支持全球甲烷核算管理方面的技术潜力和应用价值。

图片

图3|UNMAMO反演结果在监测甲烷排放源中的数据优势与潜力

4.总结

1.联合TROPOMI与GOSAT卫星数据,提出了一种耦合物理机制与机器学习技术的全球大气甲烷浓度智能反演算法,显著提升了大气甲烷反演的计算效率。

2.有效消除了气溶胶和暗地表等因素对甲烷反演的干扰,UNMAMO反演结果与TCCON地基验证数据的一致性更好。

3.克服了官方全物理反演算法失败率高的限制,同时有效抑制了高光谱探测引起的条带效应,UNMAMO反演结果的数据覆盖程度更高且空间分布更加平滑。

文章引用

文献引用:Ke Li, Kaixu Bai, Penglong Jiao, He Chen, Huiqun He, Liuqing Shao, Yibing Sun, Zhe Zheng, Ruijie Li, NiBin Chang, Developing unbiased estimation of atmospheric methane via machine learning and multiobjective programming based on TROPOMI and GOSAT data,Remote Sensing of Environment,Volume 304, 2024, 114039,ISSN00344257,https://doi.org/10.1016/j.rse. 2024.114039.

信息来源:华东师范大学地理科学学院官网

这篇关于【高校科研前沿】华东师大白开旭教授博士研究生李珂为一作在RSE发表团队最新成果:基于波谱特征优化的全球大气甲烷智能反演技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/947604

相关文章

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

Java日期类详解(最新推荐)

《Java日期类详解(最新推荐)》早期版本主要使用java.util.Date、java.util.Calendar等类,Java8及以后引入了新的日期和时间API(JSR310),包含在ja... 目录旧的日期时间API新的日期时间 API(Java 8+)获取时间戳时间计算与其他日期时间类型的转换Dur

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

MySQL 存储引擎 MyISAM详解(最新推荐)

《MySQL存储引擎MyISAM详解(最新推荐)》使用MyISAM存储引擎的表占用空间很小,但是由于使用表级锁定,所以限制了读/写操作的性能,通常用于中小型的Web应用和数据仓库配置中的只读或主要... 目录mysql 5.5 之前默认的存储引擎️‍一、MyISAM 存储引擎的特性️‍二、MyISAM 的主

基于Python实现智能天气提醒助手

《基于Python实现智能天气提醒助手》这篇文章主要来和大家分享一个实用的Python天气提醒助手开发方案,这个工具可以方便地集成到青龙面板或其他调度框架中使用,有需要的小伙伴可以参考一下... 目录项目概述核心功能技术实现1. 天气API集成2. AI建议生成3. 消息推送环境配置使用方法完整代码项目特点

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

Python多进程、多线程、协程典型示例解析(最新推荐)

《Python多进程、多线程、协程典型示例解析(最新推荐)》:本文主要介绍Python多进程、多线程、协程典型示例解析(最新推荐),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 目录一、multiprocessing(多进程)1. 模块简介2. 案例详解:并行计算平方和3. 实现逻

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl