人群计数 MCNN 解析 PGCNet

2024-04-29 20:38
文章标签 计数 解析 人群 mcnn pgcnet

本文主要是介绍人群计数 MCNN 解析 PGCNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人群计数研究的发展

传统的:直接回归计数法--- input(图片)——>outout(人数)  参考

目前深度学习主流的: input(图片)——>output(密度图)——>估计人数

为什么不基于深度学习的目标检测、原因是目标检测对于密集对象与超小目标对象很难正确识别与准确计数。无法正确给出密集人群的模型与聚集程度。进展 | 密集人群分布检测与计数_Dataset

首先对于这个新的细分领域的深度学习可以从这篇文章入门开始:

人群计数:从MCNN开始谈起~ - 知乎

人群计数--MCNN的另外一种解读

1. 标签是怎样的?人群计数里面的标签就是密度图 参考

2. 数据集标注的一个过程?

两部分,1.人群图像标注表示;2.人群图像标注转换为人群密度图。

制作标签密度图的过程,参考一,参考二, 参考三,参考四

3. 模型应该学习什么东西。输入图片,和输出密度图之间的映射关系。

4 Q:语义分割和人群计数非常类似,能不能直接用一些分割网络呢?参考
A:二者同属于逐像素任务,前者为逐像素分类(交叉熵),后者为逐像素回归(均方误差MSE)。

输出是一张密度图,那如何得到我区域里的人头数量呢?

人群计数就是对输出的密度图进行积分计算,也就是。

对密度图逐像素求和。代码参考

人群密度估计之MCNN_年轻即出发,-CSDN博客_mcnn代码实现

  • qiu_112018.08.20

    你好,我想问一下,如何从density map得到the number of persons ??

    • sqiu_11回复watersink2018.08.20

      多谢,其实zhangyingying的这篇文章里面提到了,刚看到

    • watersink作者回复sqiu_112018.08.20

      根据密度图算出来的,但是前提是需要训练数据充足,得到的结果也可以,或者可以从网络层面,专门接入一个全连接进行回归,得到人数,王小刚老师有这样的论文,可以学习

PGCNet 核心思想:

        以前的人群密度估计对近大远小的人头泛化性不是很好,因为是固定的卷积核大小,但是实现卷积核大小尺寸的改变是比较困难的,PGCNet的作者通过一种变通的方法,即先用PENet得到一张透视图,根据透视图来改变不同区域高斯核大小来达到卷积核对人头感受野可变的问题,从而提高人群密度估计的准确率,事实上作者团队经过和以前的人群估计算法的比对,准确率比2016年经典的MCNN算法高达三倍,

我们在实际测试的时候,

通过设置高斯核大小等的初始化超参数,采用通过论文作者提供的预训练模型,采用warmup + ReduceLROnPlateau的策略,然后一开始用较大的学习率+ Adam优化器训练 50 多个epoch,后用SGD优化器 + 小的学习率 调整了15个epoch,最终达到比原论文高0.1个百分点的模型,

之所以能比原作者效果更好,通过对人群估计这一任务的理解,我认为是我们的实际场景透视场景固定, 而原论文数据集里的透视场景复杂,而透视场景是影响这一任务效果的关键,后来通过和原作者之一沟通,我的猜想得到了他的肯定,透视场景基本上是现在影响人群密度估计最大影响因数之一。

  • 优化器(SGD,带动量的优化器,或者Adam等)

  • 学习率优化:ReduceLROnPlateau(监控某一个参数,当该参数不再上升或下降就进行学习率调整。)

  • 学习率优化:ReduceLROnPlateau

  • 学习率优化:ReduceLROnPlateau

  • 学习率优化:ReduceLROnPlateau

  • 学习率优化:ReduceLROnPlateau

PENet 是一个类似于UNET的encoder—decoder的算法模块,输入图片,输出是一张带有透视信息的密度图。

【学习笔记】Pytorch深度学习—学习率调整策略 - Selena白桃 - 博客园

这篇关于人群计数 MCNN 解析 PGCNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/947103

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

全面解析HTML5中Checkbox标签

《全面解析HTML5中Checkbox标签》Checkbox是HTML5中非常重要的表单元素之一,通过合理使用其属性和样式自定义方法,可以为用户提供丰富多样的交互体验,这篇文章给大家介绍HTML5中C... 在html5中,Checkbox(复选框)是一种常用的表单元素,允许用户在一组选项中选择多个项目。本

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

springboot项目中使用JOSN解析库的方法

《springboot项目中使用JOSN解析库的方法》JSON,全程是JavaScriptObjectNotation,是一种轻量级的数据交换格式,本文给大家介绍springboot项目中使用JOSN... 目录一、jsON解析简介二、Spring Boot项目中使用JSON解析1、pom.XML文件引入依

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷