Day55:动态规划 392.判断子序列 115.不同的子序列

2024-04-29 18:12

本文主要是介绍Day55:动态规划 392.判断子序列 115.不同的子序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

392. 判断子序列
 

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

进阶:

如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

示例 1:

输入:s = "abc", t = "ahbgdc"
输出:true

示例 2:

输入:s = "axc", t = "ahbgdc"
输出:false

提示:

  • 0 <= s.length <= 100
  • 0 <= t.length <= 10^4
  • 两个字符串都只由小写字符组成。

思路:

(这道题也可以用双指针的思路来实现,时间复杂度也是O(n))

动态规划五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

统一以下标i-1为结尾的字符串来计算,这样在下面的递归公式中会容易理解一些

2.确定递推公式

if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1

if (s[i - 1] != t[j - 1]),   那么dp[i][j] = dp[i][j - 1];

3.初始化

从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。

4.确定遍历顺序

从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右

5.举例

代码:

class Solution {public boolean isSubsequence(String s, String t) {int [][] dp=new int[s.length()+1][t.length()+1];for(int i=1;i<dp.length;i++){for(int j=1;j<dp[i].length;j++){//dp[i][j] 表示以下标i-1为结尾的字符串s,//和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。if(s.charAt(i-1)==t.charAt(j-1)){dp[i][j] =  dp[i-1][j-1]+1;}else{dp[i][j] = dp[i][j-1];}}}return dp[s.length()][t.length()]==s.length();}
}

115. 不同的子序列

给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 + 7 取模。

示例 1:

输入:s = "rabbbit", t = "rabbit"
输出3
解释:
如下所示, 有 3 种可以从 s 中得到 "rabbit" 的方案rabbbit
rabbbit
rabbbit

示例 2:

输入:s = "babgbag", t = "bag"
输出5
解释:
如下所示, 有 5 种可以从 s 中得到 "bag" 的方案babgbag
babgbag
babgbag
babgbag
babgbag

思路:

这道题目如果不是子序列,而是要求连续序列的,那就可以考虑用KMP。

动态规划五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

2.确定递推公式

s[i - 1] 与 t[j - 1]相等:

dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

s[i - 1] 与 t[j - 1] 不相等:

dp[i][j] = dp[i - 1][j];

3.初始化

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

4.确定遍历顺序

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。所以遍历的时候一定是从上到下,从左到右

5.举例

代码参考:

 

class Solution {public int numDistinct(String s, String t) {int[][] dp=new int[s.length()+1][t.length()+1];//初始化for(int i=0;i<dp.length;i++){dp[i][0]=1;}for(int i=1;i<dp.length;i++){for(int j=1;j<dp[i].length;j++){if(s.charAt(i-1)==t.charAt(j-1)){dp[i][j]=dp[i-1][j-1]+dp[i-1][j];}else{dp[i][j]=dp[i-1][j];}}}return dp[s.length()][t.length()];}
}

这篇关于Day55:动态规划 392.判断子序列 115.不同的子序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946799

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

如何通过try-catch判断数据库唯一键字段是否重复

《如何通过try-catch判断数据库唯一键字段是否重复》在MyBatis+MySQL中,通过try-catch捕获唯一约束异常可避免重复数据查询,优点是减少数据库交互、提升并发安全,缺点是异常处理开... 目录1、原理2、怎么理解“异常走的是数据库错误路径,开销比普通逻辑分支稍高”?1. 普通逻辑分支 v

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

Linux中的自定义协议+序列反序列化用法

《Linux中的自定义协议+序列反序列化用法》文章探讨网络程序在应用层的实现,涉及TCP协议的数据传输机制、结构化数据的序列化与反序列化方法,以及通过JSON和自定义协议构建网络计算器的思路,强调分层... 目录一,再次理解协议二,序列化和反序列化三,实现网络计算器3.1 日志文件3.2Socket.hpp

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到