搜狐2017实习生笔试题_概率问题

2024-04-29 05:38

本文主要是介绍搜狐2017实习生笔试题_概率问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目

工程师 M 发明了一种游戏:M 将一个小球随机放入完全相同的三个盒子中的某一个,玩家选中装有球的盒子即获胜;开始时 M 会让玩家选择一个盒子(选择任何一个获胜概率均为 1/3 );玩家做出选择后,M 会打开没有被选择的两个盒子中的一个空盒,此时 M 会询问玩家是否更改选择(可以坚持第一次选择,也可以选择另一个没有打开的盒子),下列叙述正确的有()。

A. 改选后,玩家获胜的概率还是 1/3
B. 若不改选,玩家的获胜概率是 1/2
C. 无论怎么选择,获胜的概率都是 1/2
D. 坚持原来的选择获胜概率更高
E. 选择另一个没有被打开的盒子获胜概率更高
F. 获胜概率取决于随机因素(如小球的实际位置)

二、解题

一开始看到这个题的时候,本人毫不犹豫的选择了 A ,然后再仔细想了一下,不对啊,这题跟经典的三门问题很像,而且也要知道玩家第一次选择和是否更改选择的两个事件不是相互独立的,因此答案不是这个了,具体答案是什么呢?也欢迎读者留言写下自己的见解。

再说答案之前,先来了解一下经典的三门问题:

三门问题( Monty Hall problem )亦称为蒙提霍尔问题、蒙特霍问题或蒙提霍尔悖论,大致出自美国的电视游戏节目 Let’s Make a Deal 。问题名字来自该节目的主持人蒙提·霍尔( Monty Hall )。参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门可赢得该汽车,另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。问题是:换另一扇门会否增加参赛者赢得汽车的机率?如果严格按照上述的条件,即主持人清楚地知道,哪扇门后是羊,那么答案是会。不换门的话,赢得汽车的几率是1/3。换门的话,赢得汽车的几率是2/3。
这个问题亦被叫做蒙提霍尔悖论:虽然该问题的答案在逻辑上并不自相矛盾,但十分违反直觉。这问题曾引起一阵热烈的讨论。

三门问题的解法:

三门问题一共有三种可能性:
(1)参赛者挑山羊一号,主持人挑山羊二号。转换将赢得汽车。
(2)参赛者挑山羊二号,主持人挑山羊一号。转换将赢得汽车。
(3)参赛者挑汽车,主持人挑羊一号。转换将失败和参赛者挑汽车,主持人挑羊二号。转换将失败,不会赢得汽车。

这里要注意了,第三种可能性的时候,概率还是 1/3 ,因为 1/3*1/2+1/3*1/2=1/3 ,所以上面的三种可能性都是相等的,都是 1/3 。从上面对的三种情况可以看到,如果参赛者重新选择另一扇门的话, 得到汽车的概率就会变成 2/3 ,所以重新选择会更加的有利。一开始这个解释都不会让人信服的,因为此时我们还在纠结的是一开始分配的概率是1/3,然后去除了一个没有汽车的门后,两个选择,所以概率就是 1/2 ,还有一种纠结就是无论我们怎么选,三种情况,每次选择的概率都是 1/3 啊,当然,第二种选择很容易就给推翻了,因为主持人明确的去除了一个不会得到汽车的门,因此概率不会是 1/3 的。一开始我也在纠结这个,查了一下,就经典的解释就是把门的数量增多,比如:

现在摆在我们面前的有100扇门,只有其中一扇门后是汽车,而其他的99扇门后都是山羊。好了,你选择其中一扇门。自然,你选取汽车的概率只有1/100。

然后,知道汽车存放处的主持人一口气打开了99扇门中的98扇,其后面都是山羊。此时你可以坚持最初的选择,也可以改变选择。你是否应当改变选择?你是否还认为在你最初选择的门与其他99扇门中唯一没有打开的那扇门背后有汽车的概率是相同的?

事实是,如果你拒绝改变,你只有在一开始就选择了正确的门的情况下才能获取汽车,这个概率只有1%。在另外99%的情况下,你最初选择的是一个后面是山羊的门,而另外的98扇已经打开,你这时改变最初的选择就可以成功。所以,在99%的概率下,改变选择是正确的。

三门问题是一个理性选择和机遇博弈问题,是关于不完全信息博弈中如何正确理解概率的含义和概率变化的问题。可见这个问题我们仔细琢磨一下,还是可以做出正确的选择的。

显然这个还是不能太让人接受,因此写个 JAVA 程序来模拟一下这个场景:

package com.liangdianshui;import java.util.Random;public class MontyHallProblem {public static void main(String[] args) {// 重复五次for (int i = 0; i < 4; i++) {montyHallProblem();System.out.println("----------------------------------");}}public static void montyHallProblem() {Random random = new Random(); // 这里不讨论Random为伪随机的问题int changeCount = 0;for (int i = 0; i < 1000000.0f; i++) { // 模拟一百万次// 假设有三个门int[] doors = new int[3];// 随机抽取一扇门 ,在门后放奖品int rIndex = random.nextInt(3);doors[rIndex] = 1;// 观众选的门号int randomSelect = random.nextInt(3);// 主持人从剩下的两扇门中排除一个while (true) {int randomDelete = random.nextInt(3);// 主持人不会打开参赛者已经选了的门(排除参赛者选择的门)if (randomDelete == randomSelect) {continue;}// 主持人不会打开有奖品的门(排除有奖品的门)if (doors[randomDelete] == 1) {continue;}for (int j = 0; j < 3; j++)// 换门{if (j == randomSelect)// 不换门(因为我们要得到的是换门的概率,因此把不换门的排除掉)continue;// 排除主持人打开了那个门(因为门已经打开,所以不能换,排除掉)if (j == randomDelete)continue;if (doors[j] == 1) {changeCount++;// 换了门后中奖的次数break;}}break;}}System.out.println("换门中奖率:" + changeCount / 1000000.0f);}}

最后运行的结果:

三门问题JAVA运行结果

根据结果可见,这里重复了四次,每次都模拟了一百万次的选择换门的情况,发现换门中奖的概念都是 0.66 左右,也就是 2/3 。

总结

可见我们这个面试题跟三门问题基本一样,所以最终选择的答案是E,也就是选择另一个没有被打开的盒子获胜概率更高。因为本人也没有官方的答案,如果有异议的话,可以进行留言。或者有错的地方,也可进行留言指出,本人会第一时间进行更改。

这篇关于搜狐2017实习生笔试题_概率问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/945228

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关