托普利兹矩阵(T矩阵)及其应用(Matlab demo测试)

2024-04-28 19:20

本文主要是介绍托普利兹矩阵(T矩阵)及其应用(Matlab demo测试),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

托普利兹矩阵(T矩阵)及其应用(Matlab demo测试)

  • 1. 概念
  • 2. Matlab简单测试
    • 2.1 生成测试
    • 2.2 基本性质及原理
    • 2.3 性质验证
  • 3. 其他应用总结
    • 3.1 其他性质
    • 3.2 文献阅读看到的
  • 参考资料

1. 概念

托普利兹矩阵,简称为T型矩阵,托普利兹矩阵的主对角线上的元素相等,平行于主对角线的线上的元素也相等;矩阵中的各元素关于次对角线对称,即T型矩阵为次对称矩阵。即 a i j = a j i a_{ij}=a_{ji} aij=aji

2. Matlab简单测试

2.1 生成测试

Matlab中可以用toeplitz(x,y)。它生成一个以 x 为第一列,y 为第一行的托普利兹矩阵。
函数中x=(x1,x2,…,xk) y=(y1,y2,…,yj)为向量形式,代表托普利兹矩阵的第一行、第一列。

x=[1, 2, 3, 3, 4, 4];
y=[1, 3, 3, 2, 3, 4];
T=toeplitz(x,y)

生成结果如下:

ans =1     3     3     2     3     42     1     3     3     2     33     2     1     3     3     23     3     2     1     3     34     3     3     2     1     34     4     3     3     2     1

2.2 基本性质及原理

其中,最基础的性质,是托普利兹矩阵可以表示为前向位移矩阵和后向位移矩阵之和。

  • 前向位移矩阵
    F = ( 0 1 . . . 0 0 . . . . . . . . . . . . . . . . . . 1 0 . . . 0 0 ) ∈ R n × n F=\left( \begin{matrix} 0& 1& ...& 0\\ 0& ...& ...& ...\\ ...& ...& ...& 1\\ 0& ...& 0& 0\\ \end{matrix} \right) \in \mathbb{R} ^{n\times n} F= 00...01..................00...10 Rn×n
  • 后向位移矩阵
    B = ( 0 0 . . . 0 1 . . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 ) ∈ R n × n B=\left( \begin{matrix} 0& 0& ...& 0\\ 1& ...& ...& ...\\ ...& ...& ...& 0\\ 0& ...& 1& 0\\ \end{matrix} \right) \in \mathbb{R} ^{n\times n} B= 01...00..................10...00 Rn×n
  • 基于性质 前向、后向矩阵幂次和

T = ∑ k − 1 n − 1 t − k B k + ∑ k = 0 n − 1 t k F k T=\sum_{k-1}^{n-1}{t_{-k}B^k+\sum_{k=0}^{n-1}{t_kF^k}}\,\, T=k1n1tkBk+k=0n1tkFk

2.3 性质验证

  • 简单前向后向矩阵 后向矩阵 的幂次性质
n = 5; % Define the size of the matrix
F = diag(ones(1, n-1), 1); % Create the forward matrix
B = F'

这性质确实有点意思… 位置变化了

>> B^2ans =0     0     0     0     00     0     0     0     01     0     0     0     00     1     0     0     00     0     1     0     0>> B^3ans =0     0     0     0     00     0     0     0     00     0     0     0     01     0     0     0     00     1     0     0     0>> B^4ans =0     0     0     0     00     0     0     0     00     0     0     0     00     0     0     0     01     0     0     0     0>> F^2ans =0     0     1     0     00     0     0     1     00     0     0     0     10     0     0     0     00     0     0     0     0>> F^3ans =0     0     0     1     00     0     0     0     10     0     0     0     00     0     0     0     00     0     0     0     0>> F^4ans =0     0     0     0     10     0     0     0     00     0     0     0     00     0     0     0     00     0     0     0     0
  • 生成 托普利兹矩阵
n = 5; % Define the size of the matrix
F = diag(ones(1, n-1), 1); % Create the forward matrix
B = F';% Define the coefficients t_{-k} and t_k
t_neg = [1, 2, 3, 4, 5]; % Example coefficients for t_{-k}
t_pos = [1, 3, 3, 2, 1]; % Example coefficients for t_kT = zeros(n); % Initialize the Toeplitz matrixfor k = 1:nT = T + t_neg(k) * (B^(k-1));
endfor k = 2:nT = T + t_pos(k) * (F^(k-1));
end

定义的信息如下:
t_neg = [1, 2, 3, 4, 5]; % Example coefficients for t_{-k}
t_pos = [1, 3, 3, 2, 1]; % Example coefficients for t_k

T =1     3     3     2     12     1     3     3     23     2     1     3     34     3     2     1     35     4     3     2     1

3. 其他应用总结

3.1 其他性质

  • Python实现版本可以参考哈工大 赵老师的博客。

  • 其他的一些性质,

    • 包括可以高效率的计算卷积…
    • 对于Ax=b的系统(线性代数中),当A为托普利兹矩阵时,可以称其为托普利兹系统, 且此时的系统自由度为2-1而不是n^2, (究其原因,和托普利兹矩阵的形式有关), 因此,可以用Levinson求解方法快速计算
    • 托普利兹矩阵可以被分解,如LU分解中的Bareiss算法

PS: LU分解,顾名思义,L 是单位下三角矩阵, U 是单位上三角矩阵。 LU分解有两种实现,分别是. Gauss消去法. 待定系数法.

    • 关于对称块矩阵(Block Toepliz)和对称矩阵(Toepliz) 虽然托普利茨矩阵具有与对角线恒定性相关的特定特征,但对称块矩阵的特征在于其子矩阵的对称性。

这些具体的性质,等到需要用的时候,再推导吧…

3.2 文献阅读看到的

对于一些工程应用,最近在一篇论文中,就用到了这个性质,需要分析一个能量传播矩阵,这个能量传播矩阵可以表示为一个近似的对称块托普利兹矩阵,因此,可以利用其卷积性质,得到不变卷积核:
在这里插入图片描述

参考资料

【1】-csdn 托普利兹矩阵

这篇关于托普利兹矩阵(T矩阵)及其应用(Matlab demo测试)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/944052

相关文章

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.