托普利兹矩阵(T矩阵)及其应用(Matlab demo测试)

2024-04-28 19:20

本文主要是介绍托普利兹矩阵(T矩阵)及其应用(Matlab demo测试),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

托普利兹矩阵(T矩阵)及其应用(Matlab demo测试)

  • 1. 概念
  • 2. Matlab简单测试
    • 2.1 生成测试
    • 2.2 基本性质及原理
    • 2.3 性质验证
  • 3. 其他应用总结
    • 3.1 其他性质
    • 3.2 文献阅读看到的
  • 参考资料

1. 概念

托普利兹矩阵,简称为T型矩阵,托普利兹矩阵的主对角线上的元素相等,平行于主对角线的线上的元素也相等;矩阵中的各元素关于次对角线对称,即T型矩阵为次对称矩阵。即 a i j = a j i a_{ij}=a_{ji} aij=aji

2. Matlab简单测试

2.1 生成测试

Matlab中可以用toeplitz(x,y)。它生成一个以 x 为第一列,y 为第一行的托普利兹矩阵。
函数中x=(x1,x2,…,xk) y=(y1,y2,…,yj)为向量形式,代表托普利兹矩阵的第一行、第一列。

x=[1, 2, 3, 3, 4, 4];
y=[1, 3, 3, 2, 3, 4];
T=toeplitz(x,y)

生成结果如下:

ans =1     3     3     2     3     42     1     3     3     2     33     2     1     3     3     23     3     2     1     3     34     3     3     2     1     34     4     3     3     2     1

2.2 基本性质及原理

其中,最基础的性质,是托普利兹矩阵可以表示为前向位移矩阵和后向位移矩阵之和。

  • 前向位移矩阵
    F = ( 0 1 . . . 0 0 . . . . . . . . . . . . . . . . . . 1 0 . . . 0 0 ) ∈ R n × n F=\left( \begin{matrix} 0& 1& ...& 0\\ 0& ...& ...& ...\\ ...& ...& ...& 1\\ 0& ...& 0& 0\\ \end{matrix} \right) \in \mathbb{R} ^{n\times n} F= 00...01..................00...10 Rn×n
  • 后向位移矩阵
    B = ( 0 0 . . . 0 1 . . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 ) ∈ R n × n B=\left( \begin{matrix} 0& 0& ...& 0\\ 1& ...& ...& ...\\ ...& ...& ...& 0\\ 0& ...& 1& 0\\ \end{matrix} \right) \in \mathbb{R} ^{n\times n} B= 01...00..................10...00 Rn×n
  • 基于性质 前向、后向矩阵幂次和

T = ∑ k − 1 n − 1 t − k B k + ∑ k = 0 n − 1 t k F k T=\sum_{k-1}^{n-1}{t_{-k}B^k+\sum_{k=0}^{n-1}{t_kF^k}}\,\, T=k1n1tkBk+k=0n1tkFk

2.3 性质验证

  • 简单前向后向矩阵 后向矩阵 的幂次性质
n = 5; % Define the size of the matrix
F = diag(ones(1, n-1), 1); % Create the forward matrix
B = F'

这性质确实有点意思… 位置变化了

>> B^2ans =0     0     0     0     00     0     0     0     01     0     0     0     00     1     0     0     00     0     1     0     0>> B^3ans =0     0     0     0     00     0     0     0     00     0     0     0     01     0     0     0     00     1     0     0     0>> B^4ans =0     0     0     0     00     0     0     0     00     0     0     0     00     0     0     0     01     0     0     0     0>> F^2ans =0     0     1     0     00     0     0     1     00     0     0     0     10     0     0     0     00     0     0     0     0>> F^3ans =0     0     0     1     00     0     0     0     10     0     0     0     00     0     0     0     00     0     0     0     0>> F^4ans =0     0     0     0     10     0     0     0     00     0     0     0     00     0     0     0     00     0     0     0     0
  • 生成 托普利兹矩阵
n = 5; % Define the size of the matrix
F = diag(ones(1, n-1), 1); % Create the forward matrix
B = F';% Define the coefficients t_{-k} and t_k
t_neg = [1, 2, 3, 4, 5]; % Example coefficients for t_{-k}
t_pos = [1, 3, 3, 2, 1]; % Example coefficients for t_kT = zeros(n); % Initialize the Toeplitz matrixfor k = 1:nT = T + t_neg(k) * (B^(k-1));
endfor k = 2:nT = T + t_pos(k) * (F^(k-1));
end

定义的信息如下:
t_neg = [1, 2, 3, 4, 5]; % Example coefficients for t_{-k}
t_pos = [1, 3, 3, 2, 1]; % Example coefficients for t_k

T =1     3     3     2     12     1     3     3     23     2     1     3     34     3     2     1     35     4     3     2     1

3. 其他应用总结

3.1 其他性质

  • Python实现版本可以参考哈工大 赵老师的博客。

  • 其他的一些性质,

    • 包括可以高效率的计算卷积…
    • 对于Ax=b的系统(线性代数中),当A为托普利兹矩阵时,可以称其为托普利兹系统, 且此时的系统自由度为2-1而不是n^2, (究其原因,和托普利兹矩阵的形式有关), 因此,可以用Levinson求解方法快速计算
    • 托普利兹矩阵可以被分解,如LU分解中的Bareiss算法

PS: LU分解,顾名思义,L 是单位下三角矩阵, U 是单位上三角矩阵。 LU分解有两种实现,分别是. Gauss消去法. 待定系数法.

    • 关于对称块矩阵(Block Toepliz)和对称矩阵(Toepliz) 虽然托普利茨矩阵具有与对角线恒定性相关的特定特征,但对称块矩阵的特征在于其子矩阵的对称性。

这些具体的性质,等到需要用的时候,再推导吧…

3.2 文献阅读看到的

对于一些工程应用,最近在一篇论文中,就用到了这个性质,需要分析一个能量传播矩阵,这个能量传播矩阵可以表示为一个近似的对称块托普利兹矩阵,因此,可以利用其卷积性质,得到不变卷积核:
在这里插入图片描述

参考资料

【1】-csdn 托普利兹矩阵

这篇关于托普利兹矩阵(T矩阵)及其应用(Matlab demo测试)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/944052

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima