托普利兹矩阵(T矩阵)及其应用(Matlab demo测试)

2024-04-28 19:20

本文主要是介绍托普利兹矩阵(T矩阵)及其应用(Matlab demo测试),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

托普利兹矩阵(T矩阵)及其应用(Matlab demo测试)

  • 1. 概念
  • 2. Matlab简单测试
    • 2.1 生成测试
    • 2.2 基本性质及原理
    • 2.3 性质验证
  • 3. 其他应用总结
    • 3.1 其他性质
    • 3.2 文献阅读看到的
  • 参考资料

1. 概念

托普利兹矩阵,简称为T型矩阵,托普利兹矩阵的主对角线上的元素相等,平行于主对角线的线上的元素也相等;矩阵中的各元素关于次对角线对称,即T型矩阵为次对称矩阵。即 a i j = a j i a_{ij}=a_{ji} aij=aji

2. Matlab简单测试

2.1 生成测试

Matlab中可以用toeplitz(x,y)。它生成一个以 x 为第一列,y 为第一行的托普利兹矩阵。
函数中x=(x1,x2,…,xk) y=(y1,y2,…,yj)为向量形式,代表托普利兹矩阵的第一行、第一列。

x=[1, 2, 3, 3, 4, 4];
y=[1, 3, 3, 2, 3, 4];
T=toeplitz(x,y)

生成结果如下:

ans =1     3     3     2     3     42     1     3     3     2     33     2     1     3     3     23     3     2     1     3     34     3     3     2     1     34     4     3     3     2     1

2.2 基本性质及原理

其中,最基础的性质,是托普利兹矩阵可以表示为前向位移矩阵和后向位移矩阵之和。

  • 前向位移矩阵
    F = ( 0 1 . . . 0 0 . . . . . . . . . . . . . . . . . . 1 0 . . . 0 0 ) ∈ R n × n F=\left( \begin{matrix} 0& 1& ...& 0\\ 0& ...& ...& ...\\ ...& ...& ...& 1\\ 0& ...& 0& 0\\ \end{matrix} \right) \in \mathbb{R} ^{n\times n} F= 00...01..................00...10 Rn×n
  • 后向位移矩阵
    B = ( 0 0 . . . 0 1 . . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 ) ∈ R n × n B=\left( \begin{matrix} 0& 0& ...& 0\\ 1& ...& ...& ...\\ ...& ...& ...& 0\\ 0& ...& 1& 0\\ \end{matrix} \right) \in \mathbb{R} ^{n\times n} B= 01...00..................10...00 Rn×n
  • 基于性质 前向、后向矩阵幂次和

T = ∑ k − 1 n − 1 t − k B k + ∑ k = 0 n − 1 t k F k T=\sum_{k-1}^{n-1}{t_{-k}B^k+\sum_{k=0}^{n-1}{t_kF^k}}\,\, T=k1n1tkBk+k=0n1tkFk

2.3 性质验证

  • 简单前向后向矩阵 后向矩阵 的幂次性质
n = 5; % Define the size of the matrix
F = diag(ones(1, n-1), 1); % Create the forward matrix
B = F'

这性质确实有点意思… 位置变化了

>> B^2ans =0     0     0     0     00     0     0     0     01     0     0     0     00     1     0     0     00     0     1     0     0>> B^3ans =0     0     0     0     00     0     0     0     00     0     0     0     01     0     0     0     00     1     0     0     0>> B^4ans =0     0     0     0     00     0     0     0     00     0     0     0     00     0     0     0     01     0     0     0     0>> F^2ans =0     0     1     0     00     0     0     1     00     0     0     0     10     0     0     0     00     0     0     0     0>> F^3ans =0     0     0     1     00     0     0     0     10     0     0     0     00     0     0     0     00     0     0     0     0>> F^4ans =0     0     0     0     10     0     0     0     00     0     0     0     00     0     0     0     00     0     0     0     0
  • 生成 托普利兹矩阵
n = 5; % Define the size of the matrix
F = diag(ones(1, n-1), 1); % Create the forward matrix
B = F';% Define the coefficients t_{-k} and t_k
t_neg = [1, 2, 3, 4, 5]; % Example coefficients for t_{-k}
t_pos = [1, 3, 3, 2, 1]; % Example coefficients for t_kT = zeros(n); % Initialize the Toeplitz matrixfor k = 1:nT = T + t_neg(k) * (B^(k-1));
endfor k = 2:nT = T + t_pos(k) * (F^(k-1));
end

定义的信息如下:
t_neg = [1, 2, 3, 4, 5]; % Example coefficients for t_{-k}
t_pos = [1, 3, 3, 2, 1]; % Example coefficients for t_k

T =1     3     3     2     12     1     3     3     23     2     1     3     34     3     2     1     35     4     3     2     1

3. 其他应用总结

3.1 其他性质

  • Python实现版本可以参考哈工大 赵老师的博客。

  • 其他的一些性质,

    • 包括可以高效率的计算卷积…
    • 对于Ax=b的系统(线性代数中),当A为托普利兹矩阵时,可以称其为托普利兹系统, 且此时的系统自由度为2-1而不是n^2, (究其原因,和托普利兹矩阵的形式有关), 因此,可以用Levinson求解方法快速计算
    • 托普利兹矩阵可以被分解,如LU分解中的Bareiss算法

PS: LU分解,顾名思义,L 是单位下三角矩阵, U 是单位上三角矩阵。 LU分解有两种实现,分别是. Gauss消去法. 待定系数法.

    • 关于对称块矩阵(Block Toepliz)和对称矩阵(Toepliz) 虽然托普利茨矩阵具有与对角线恒定性相关的特定特征,但对称块矩阵的特征在于其子矩阵的对称性。

这些具体的性质,等到需要用的时候,再推导吧…

3.2 文献阅读看到的

对于一些工程应用,最近在一篇论文中,就用到了这个性质,需要分析一个能量传播矩阵,这个能量传播矩阵可以表示为一个近似的对称块托普利兹矩阵,因此,可以利用其卷积性质,得到不变卷积核:
在这里插入图片描述

参考资料

【1】-csdn 托普利兹矩阵

这篇关于托普利兹矩阵(T矩阵)及其应用(Matlab demo测试)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/944052

相关文章

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

C#通过进程调用外部应用的实现示例

《C#通过进程调用外部应用的实现示例》本文主要介绍了C#通过进程调用外部应用的实现示例,以WINFORM应用程序为例,在C#应用程序中调用PYTHON程序,具有一定的参考价值,感兴趣的可以了解一下... 目录窗口程序类进程信息类 系统设置类 以WINFORM应用程序为例,在C#应用程序中调用python程序