西湖大学赵世钰老师【强化学习的数学原理】学习笔记1节

2024-04-28 04:52

本文主要是介绍西湖大学赵世钰老师【强化学习的数学原理】学习笔记1节,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习的数学原理是由西湖大学赵世钰老师带来的关于RL理论方面的详细课程,本课程深入浅出地介绍了RL的基础原理,前置技能只需要基础的编程能力、概率论以及一部分的高等数学,你听完之后会在大脑里面清晰的勾勒出RL公式推导链条中的每一个部分。赵老师明确知道RL创新研究的理论门槛在哪,也知道视频前的你我距离这个门槛还有多远。

本笔记将会用于记录我学习中的理解,会结合赵老师的视频截图,以及PDF文档Book-Mathematical-Foundation-of-Reinforcement-Learning进行笔记注释,之后也会补充课程相关的代码样例,帮助大家理解

笔记合集链接(排版更好哦🧐):《RL的数学原理》

记得点赞哟(๑ゝω╹๑)

Action

Agent在每个状态能够采取的行动

ActionSpace是依赖于State的,即不同状态会对应不同的ActionSpace

State transition

当采取一个action,Agent从一个State,转移到另一个State的过程

我们设计允许Agent踏入禁止区域,再惩罚扣分,而不是禁止进入,一是避免状态空间被缩小,而是适当的尝试扣分项,可能能创造更高的奖励。

状态转移矩阵

State transition可以用一个状态转移矩阵表示,这样表示相当直观,但是只能表示确认性的情况,因此现实中使用较为受限

状态转移可能性

用条件概率来表达这种有随机性的例子,让状态转移的概率形式更加一般化

Policy

Agent被告知在一个状态会采取的动作,给予这个Policy,能够创建一条路径

我们仍然使用条件概率来表示策略,使用符号π来表示任何一个state下,一个action的条件概率是多少

Reward

Agent在采取了一个动作后获得的一个实数标量

  • 正数即鼓励行为的发生
  • 负数即不被希望发生的行为
  • 0一般没有意义,但是相对来说算是奖励

Reward是我们和机器交互的一种方式,去引导Agent实现合适的策略

小贴示
  1. 当reward的产生存在概率时,则表格不再适用
  2. 只要你努力学习你就应该得到奖励,但具体数值并不会确定,同样的,Agent的奖励应该基于当前状态和奖励,而不是下一个状态

Trajectory and return

A state-action-reward chain

Return

对Trajectory的奖励进行求和

通过return,可以直观描述以及评估一个policy的好坏

Discounted return

引入discount rate,避免return的发散,实现无穷级数的收敛

在return前添加折扣discount rate -> γ

  • If γ is close to 0:让Agent的决策更趋向于即时奖励
  • If γ is close to 1:让Agent的决策更趋向于长期奖励

Episode

episode可以理解为有terminal states(终止点)的trajectory,因此通常是有限步的,这样的任务被称为episodic tasks。

与之相对的是continuing tasks,与环境的交互不会终止

episodic tasks与continuing tasks的相互转化
  1. 将target状态设为absorbing state(可以理解为黑洞状态),一旦到达就无法离开
  2. 保持target为正常节点,使用奖励策略来阻止agent离开,允许agent跳出

我们采用第二种,虽然需要更多时间探索,但是最终的效果也将更加一般化

Markov decision process(MDP)[马尔科夫决策过程框架]

Key elements of MDP:

  • Sets:
    • State:the set of states S
    • Action:the set of actions A(s) is associated for state s ∈ S.
    • Reward:the set of rewards R(s,a).
  • Probability distribution:
    • State transition probability: at state s, taking action a, the probability to transit to state s’ is p(s’|s,a)
    • Reward probability: at state s, taking action a,the probability to get reward r is p(r|s,a)
  • Policy: at state s, the probability to choose action a is π(a|s)
  • Markov property:memoryless property

p(st+1|at+1,st,…,a1,s0)=p(st+1|at+1,st),

p(rt+1|at+1,st,…,a1,s0)=p(rt+1|at+1,st).

All the concepts introduced in this lecture can be put in the framework in MDP.


之前的GWE可以被抽象为一个马尔科夫过程(Markov porcess)

Markov decision process becomes Markov process once the policy is given!

马尔科夫决策过程当有了一个明确的决策方式,就变成了马尔科夫过程

小结

By using grid-world examples, we demonstrated the following key concepts:

  • State
  • Action
  • State transition, state transition probability p(s’|s,a)
  • Reward, reward probability p(r|s,a)
  • Trajectory, episode, return, discounted return
  • Markov decision process

这篇关于西湖大学赵世钰老师【强化学习的数学原理】学习笔记1节的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/942364

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06