【并集查找 最大公约数 调和数】952. 按公因数计算最大组件大小

本文主要是介绍【并集查找 最大公约数 调和数】952. 按公因数计算最大组件大小,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文涉及知识点

图论 并集查找 最大公约数 调和数

LeetCode952. 按公因数计算最大组件大小

给定一个由不同正整数的组成的非空数组 nums ,考虑下面的图:
有 nums.length 个节点,按从 nums[0] 到 nums[nums.length - 1] 标记;
只有当 nums[i] 和 nums[j] 共用一个大于 1 的公因数时,nums[i] 和 nums[j]之间才有一条边。
返回 图中最大连通组件的大小 。
示例 1:
在这里插入图片描述
输入:nums = [4,6,15,35]
输出:4
示例 2:
在这里插入图片描述
输入:nums = [20,50,9,63]
输出:2
示例 3:
在这里插入图片描述

输入:nums = [2,3,6,7,4,12,21,39]
输出:8
提示:
1 <= nums.length <= 2 * 104
1 <= nums[i] <= 105
nums 中所有值都 不同

调和数

m = max(nums[i])。
vIndex记录各数的下标:-1,非法。相同的值如果有多个,只记录第一个。重复出现的数和第一个元素连接。
枚举x$\in[1,max(nums[i])] v[x] 记录x的倍数下标。
v[x]的数据分别和v[x][0]连接。
枚举1的倍数,需要运算m次。
枚举2的倍数,需要运算m/2。
枚举3的倍数,需要运算m/3。
⋯ \cdots
总次数为:m(1+1/2+1/3 + ⋯ \cdots +1/m) ,括号内是调和数, ≈ \approx logm。
故总时间复杂度为:O(mlogm)。
v[x] 就是可以只记录一个元素,后面的元素直接和它连接。

代码

核心代码

class CUnionFind
{
public:CUnionFind(int iSize) :m_vNodeToRegion(iSize){for (int i = 0; i < iSize; i++){m_vNodeToRegion[i] = i;}m_iConnetRegionCount = iSize;}	CUnionFind(vector<vector<int>>& vNeiBo):CUnionFind(vNeiBo.size()){for (int i = 0; i < vNeiBo.size(); i++) {for (const auto& n : vNeiBo[i]) {Union(i, n);}}}int GetConnectRegionIndex(int iNode){int& iConnectNO = m_vNodeToRegion[iNode];if (iNode == iConnectNO){return iNode;}return iConnectNO = GetConnectRegionIndex(iConnectNO);}void Union(int iNode1, int iNode2){const int iConnectNO1 = GetConnectRegionIndex(iNode1);const int iConnectNO2 = GetConnectRegionIndex(iNode2);if (iConnectNO1 == iConnectNO2){return;}m_iConnetRegionCount--;if (iConnectNO1 > iConnectNO2){UnionConnect(iConnectNO1, iConnectNO2);}else{UnionConnect(iConnectNO2, iConnectNO1);}}bool IsConnect(int iNode1, int iNode2){return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);}int GetConnetRegionCount()const{return m_iConnetRegionCount;}vector<int> GetNodeCountOfRegion()//各联通区域的节点数量{const int iNodeSize = m_vNodeToRegion.size();vector<int> vRet(iNodeSize);for (int i = 0; i < iNodeSize; i++){vRet[GetConnectRegionIndex(i)]++;}return vRet;}std::unordered_map<int, vector<int>> GetNodeOfRegion(){std::unordered_map<int, vector<int>> ret;const int iNodeSize = m_vNodeToRegion.size();for (int i = 0; i < iNodeSize; i++){ret[GetConnectRegionIndex(i)].emplace_back(i);}return ret;}
private:void UnionConnect(int iFrom, int iTo){m_vNodeToRegion[iFrom] = iTo;}vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引int m_iConnetRegionCount;
};class Solution {
public:int largestComponentSize(vector<int>& nums) {m_c = nums.size();const int iMax = *std::max_element(nums.begin(), nums.end());CUnionFind uf(m_c);vector<int> vIndex(iMax + 1, -1);for (int i = 0; i < m_c; i++) {if (-1 == vIndex[nums[i]]) {vIndex[nums[i]] = i;}else{uf.Union(i, vIndex[nums[i]]);}}for (int x = 2; x <= iMax; x++) {int pre = -1;for (int cur = x; cur <= iMax; cur += x) {if (-1 == vIndex[cur]) { continue; }if (-1 == pre) {pre = vIndex[cur];}else {uf.Union(pre, vIndex[cur]);}}}auto m = uf.GetNodeOfRegion();int iRet = 0;for (const auto& [tmp, v] : m) {iRet = max(iRet, (int)v.size());}return iRet;}int m_c;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<int> nums;{Solution sln;nums = { 20,50,9,63 };auto res = sln.largestComponentSize(nums);Assert(2, res);}{Solution sln;nums = { 4, 6, 15, 35 };auto res = sln.largestComponentSize(nums);Assert(4, res);}{Solution sln;nums = { 2,3,6,7,4,12,21,39 };auto res = sln.largestComponentSize(nums);Assert(8, res);}}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【并集查找 最大公约数 调和数】952. 按公因数计算最大组件大小的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/941173

相关文章

Vue3视频播放组件 vue3-video-play使用方式

《Vue3视频播放组件vue3-video-play使用方式》vue3-video-play是Vue3的视频播放组件,基于原生video标签开发,支持MP4和HLS流,提供全局/局部引入方式,可监听... 目录一、安装二、全局引入三、局部引入四、基本使用五、事件监听六、播放 HLS 流七、更多功能总结在 v

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

SQL Server 查询数据库及数据文件大小的方法

《SQLServer查询数据库及数据文件大小的方法》文章介绍了查询数据库大小的SQL方法及存储过程实现,涵盖当前数据库、所有数据库的总大小及文件明细,本文结合实例代码给大家介绍的非常详细,感兴趣的... 目录1. 直接使用SQL1.1 查询当前数据库大小1.2 查询所有数据库的大小1.3 查询每个数据库的详

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1