ETH-TRUNK链路原理和实验

2024-04-27 15:48
文章标签 原理 实验 链路 trunk eth

本文主要是介绍ETH-TRUNK链路原理和实验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用聚合链路目的:

在这里插入图片描述
在华为设备中被称为Eth-Trunk,是将一组相同类型的物理以太网接口捆绑在一起的逻辑接口,是一种用来增加带宽的方式(比如一些设备有多个接口,但是每个接口的最大带宽不满足要求,就可以使用链路聚合的方式),并且比普通的单纯增加链路提高了可靠性(例如备份),并且能够实现有序的负载分担。

同样的Eth-Trunk跟普通的物理以太网口相同,可以配置access,hybrid,trunk或者tunnel接口。

聚合链路负载原理:

在这里插入图片描述
1.Eth-Trunk模块从MAC子层接收到一个数据帧后,根据负载分担方式提取数据帧的源MAC地址/IP地址或目的MAC地址/IP地址(按照自己配置的负载分担的方式提取相同的字段)。
2.根据HASH算法进行计算,得到HASH-KEY值。
3.Eth-Trunk模块根据HASH-KEY值在转发表中查找对应的接口,把数据帧从该接口发送出去。

聚合链路的两种配置方式:

手工负载分担模式(manual,为默认值): 在该模式下,Eth-Trunk接口的建立、成员接口的加入,以及那些接口作为活动接口完全由手工决定的。在该模式下所有活动链路都参与数据的转发,平均分担流量。如果某条活动链路故障,链路聚合组自动在剩余的活动链路中平均分担流量。常用在对端链路不支持LACP的模式下。

配置:
mode manual load-balance //手工模式
trunkport Ethernet 0/0/1 to 0/0/3 //将接口加入其中,加入接口时,接口必须为hybrid口,加入之前接口不要做任何的配置
load-balance x //配置相应的负载分担模式
在这里插入图片描述
由于负载分担配置仅对出方向的流量有效,因此链路两端接的负载分担方式可以不一致,互不影响。
查看命令:dis eth-trunk 1
在这里插入图片描述
可以查看到自己这端加入聚合链路的链路和状态,并可以查看最小的激活链路数等(默认为1)。

但是可以发现局限性,仅能看到本端链路聚合专业,但如果对方其实没有进行链路聚合不能够被发现。

LACP模式(根据不同的系统版本lacp或者lacp-static): 是一种利用LACP协议进行聚合参数协商、确定活动接口和非活动接口的高级链路集合方式。在这个模式下,接口的建立和成员的接入虽然是手工完成的,但是具体哪些接口作为活动接口,哪些接口作为备份(注意,手工负载分担模式中无法做备份,全部正常的接口必须进行工作)是依靠LACP报文协商出来的。并且为了使得两端设备所选择的活动接口必须保持一致(不一致无法建立),我们引入了系统优先级这一概念,可以使得其中一端有更高的优先级(默认为32768,数值越小优先级越高,优先级相同的会比较系统的MAC地址,越小的越优先),也就是作为主设备,另外一端根据高优先级一端来选择活动接口即可(作为从设备)。除此之外,我们还有另外一个优先级——接口优先级(默认为32768,数值也是越小越好,相同时比较接口编号,编号越小越优先),在系统优先级高的一端进入参加聚合的接口下进行接口优先级的配置,接口优先级越高的会被优先选举为活动接口。

相应配置:
模式:
mode lacp-static或者mode lacp
聚合接口加入物理接口:(两种方式,一种是在被加入接口上,另外一种是在聚合接口上)
被加入接口上:(首先进入被加入的接口)
eth-trunk 1 //直接输入对应拒绝接口的编号
聚合接口上:(进入聚合接口上)
trunkport GigabitEthernet 0/0/1 //输入要加入聚合接口的物理接口即可
系统优先级:
lacp priority xxx //全局配置模式下,范围为0-65535,越小越优先
接口优先级:
lacp priority xxx //命令相同,但是需要进入相应接口下,范围为0-65535,越小越优先
查看聚合链路的命令:
dis eth-trunk 1 //查看聚合链路的信息,不仅有自己的信息,也有对方的信息
在这里插入图片描述
其中:
System ID:自己系统的MAC地址
SystemID:对端系统的MAC地址
System Priority:自己的系统的优先级
SysPri:对方的系统优先级
PortPri:接口优先级
Status:Selected表示是活动的,Unselected表示备份
Max Active-linnumber:最大活动链路数
Least Active-linnumber:最小活动链路数
Number Of Up Port In Trunk:加入聚合接口的物理接口数

dis lacp statistics eth-trunk 1 //查看lacp在聚合链路中发送PDU的信息
在这里插入图片描述

LACP中的其他参数:
1.配置活动接口输上限阈值:默认为8,也就是按照优先级由高到低选择其对应数量的活动接口,如果接口数目超过阈值,高优先级接口成为备份接口。
配置:
max active-linknumber x //进入聚合接口下配置(范围1-8)
2.配置活动接口的下线阈值: 默认为1,也就是LACP中最少有多少个活动接口,如果无法满足最小的活动端口要求,聚合链路不会开启,其他接口恢复成独立的状态。
配置:
least active-linknumber x //进入聚合接口下配置(范围1-8)
3.LACP的抢占:默认是关闭,也就是有一个接口优先级高的链路加入聚合后,开启后会抢占原来接口优先级低的接口成为活动的接口。
配置:
lacp preempt enable //进入聚合接口开启抢占功能
4.LACP的抢占时间:默认为30s,在抢占开启后会生效,意味着在30s后会将活动端口抢占过来,可以修改。
配置:
lacp preempt delay x //进入聚合接口配置抢占时间(范围10-180s)
5.接收LACP报文超时时间: 默认为90s,也就是在90s内没有收到对端的LACP报文,就会认为对端不可达,然后将本端相应的聚合接口关闭掉,不再进行流量的转发。
配置:
lacp timeout fast\slow //进入聚合接口配置LACP报文超时时间,表示多久没有接收到对方的报文就认为对方出现故障,然后自己也退出lacp聚合链路中
6.负载分担模式:这里和手工负载分担模式中类似。

参考资料:《华为交换机学习指南》

这篇关于ETH-TRUNK链路原理和实验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940906

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja