Rust异步并发编程tokio异步运行时讲解和使用,新手必学

2024-04-27 12:20

本文主要是介绍Rust异步并发编程tokio异步运行时讲解和使用,新手必学,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Rust 在v1.39版本以后就引入了async关键字,用于支持异步编程。

async fn foo() {}

Rust中,async函数或块会被视作一个 Future 对象,async 关键字只是用来定义这个 Future 对象,定义好的这片异步代码并不会自动执行,而是需要和 async 配对的 .await 去驱动它才会执行。

用 async 定义异步代码,用 .await 驱动执行。

但是 .await 又只能在 async 块中调用。

Rust 明确规定了,main 函数前不能加 async 修饰。也就是说,只能写成这种形式。

fn main() {let a = async {};a.await;
}

但是前面又说过了,.await 只能写在 async 代码块或函数里。这里就需要引入异步运行时了。

异步运行时

异步运行时是一个库,这个库包含一个响应器(reactor)和一个或多个执行器(executor)。它需要处理下面的事:

异步代码的执行;

任务的暂停;

状态的缓存;

外部事件的监听注册;

外部信号来了后,唤醒对应的任务,恢复任务状态;

多个任务间的调度。 

tokio第三方实现库

目前 Rust 标准库中还没有内置一个官方的异步 Runtime,tokio 在第三方异步 Runtime 的激烈竞争中胜出,可以说它现在已经成为了 Rust 生态中异步运行时事实上的标准。

1.引入依赖

在Cargo.toml中引入依赖

tokio = { version = "1", features = ["full"] }

2. main 函数

tokio提供的一个属性宏标注在main函数上面,这样main函数前就可以加async修饰了。解决了上面提到的问题。

#[tokio::main]      // 这个是tokio库里面提供的一个属性宏标注
async fn main() {   // 注意 main 函数前面有 async println!("Hello world");
}

tokio 还可以基于当前系统线程创建单线程的 Runtime,你可以看一下示例。

#[tokio::main(flavor = "current_thread")]  // 属性标注里面配置参数
async fn main() {println!("Hello world");
}

3. tokio组件

tokio 发展到现在,已经是一个功能丰富、机制完善的 Runtime 框架了。它针对异步场景把 Rust 标准库里对应的类型和设施都重新实现了一遍。具体包含 6 个部分。

  • Runtime 设施组件:你可以自由地配置创建基于系统单线程的 Runtime 和多线程的 Runtime。
  • 轻量级任务 task:你可以把它理解成类似 Go 语言中的 Goroutine 这种轻量级线程,而不是操作系统层面的线程。
  • 异步输入输出(I/O):网络模块 net、文件操作模块 fs、signal 模块、process 模块等。
  • 时间模块:定时器 Interval 等。
  • 异步场景下的同步原语:channel、Mutex 锁等等。
  • 在异步环境下执行计算密集型任务的方案spawn_blocking等等。

4. tokio的一些知识

1) tokio 底层机制

tokio reactor:用来接收从操作系统的异步框架中传回的消息事件,然后通知tokio waker把对应的任务唤醒。

tokio waker:唤醒对应任务。

tokio executor: 执行对应唤醒任务。每个任务会被抽象成一个Future来独立处理,而每个Future在Rust中会被处理成一个结构体,用状态机的方式来管理。Tokio 中还实现了对这些任务的安排调度机制。

2) 轻量级线程

tokio 提供了一种合作式(而非抢占式)的任务模型:每个任务 task 都可以看作是一个轻量级的线程,与操作系统线程相对。操作系统默认的线程机制需要消耗比较多的资源,一台普通服务器上能启动的总线程数一般最多也就几千个。而 tokio 的轻量级线程可以在一台普通服务器上创建上百万个。

3))M:N模型

tokio 的这个模型是一种 M:N 模型,M 表示轻量级线程的数量,N 表示操作系统线程的数量。N最常用的默认配置是一个机器上有多少CPU逻辑处理核,N就等于多少。

4) 合作式

tokio 的轻量级线程之间的关系是一种合作式的。合作式的意思就是同一个 CPU 核上的任务大家是配合着执行(不同 CPU 核上的任务是并行执行的)。我们可以设想一个简单的场景,A 和 B 两个任务被分配到了同一个 CPU 核上,A 先执行,那么,只有在 A 异步代码中碰到 .await 而且不能立即得到返回值的时候,才会触发挂起,进而切换到任务 B 执行。也就是说,在一个 task 没有遇到 .await 之前,它是不会主动交出这个 CPU 核的,其他 task 也不能主动来抢占这个 CPU 核。

5)创建tokio task

创建 tokio task,这需要使用 task::spawn() 函数。

use tokio::task;#[tokio::main]
async fn main() {task::spawn(async {// 在这里执行异步任务});
}

在这个示例里,main 函数里面创建了一个新的 task,用来执行具体的任务。我们需要知道,tokio 管理下的 async fn main() {} 本身就是一个 task,相当于在 main task 中,创建了一个新的 task 来执行。这里,main task 就是父 task,新创建的这个 task 是子 task。

在 tokio 中,子 task 的生存期有可能超过父 task 的生存期,也就是父 task 执行结束了,但子 task 还在执行。如果在父 task 里要等待子 task 执行完,再结束自己,保险的做法是用 JoinHandler。

注意:如果 main 函数所在的 task 先结束了,会导致整个程序进程退出,有可能会强制杀掉那些新创建的子 task。

JoinHandler 是什么意思呢?这个新概念跟 task 的管理相关。我们在 main task 中里创建一个新 task 后,task::spawn() 函数实际有一个返回值,它返回一个 handler,这个 handler 可以让我们在 main task 里管理新创建的 task。这个 handler 也可以用来指代这个新的 task,相当于给这个 task 取了一个名字。比如示例里,我们就把这个新的任务命名为 task_a,它的类型是 JoinHandler。在用 spawn() 创建 task_a 后,这个新任务就立即执行。

有了 JoinHandler,我们可以方便地创建一批新任务,并等待它们的返回值。

use tokio::task;async fn my_background_op(id: i32) -> String {let s = format!("Starting background task {}.", id);println!("{}", s);s
}#[tokio::main]
async fn main() {let ops = vec![1, 2, 3];let mut tasks = Vec::with_capacity(ops.len());for op in ops.clone() {// 任务创建后,立即开始运行,我们用一个Vec来持有各个任务的handlertasks.push(tokio::spawn(my_background_op(op)));}let mut outputs = Vec::with_capacity(tasks.len());for task in tasks {outputs.push(task.await.unwrap());}println!("{:?}", outputs);
}
// 输出
Starting background task 1.
Starting background task 2.
Starting background task 3.

上面示例里,我们用 tasks 这个动态数组持有 3 个异步任务的 handler,它们是并发执行的。然后对 tasks 进行迭代,等待每个 task 执行完成,并且搜集任务的结果放到 outputs 动态数组里。最后打印出来。 

这篇关于Rust异步并发编程tokio异步运行时讲解和使用,新手必学的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940492

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(