Tensorflow实现图片StyleTransfer

2024-04-27 02:48

本文主要是介绍Tensorflow实现图片StyleTransfer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.效果展示:

原图:

风格图:                                                   

二. 数据集为8000多张图片,训练一个模型,指定一种训练风格的图片

数据集链接:训练数据,8W多 12G蛮大的
http://msvocds.blob.core.windows.net/coco2014/train2014.zip

训练代码:

from __future__ import print_function
import sys, os, pdb
import numpy as np
import scipy.misc
from src.optimize import optimize
from argparse import ArgumentParser
from src.utils import save_img, get_img, exists, list_files
import evaluate  # 迭代优化CONTENT_WEIGHT = 7.5e0
STYLE_WEIGHT = 1e2
TV_WEIGHT = 2e2LEARNING_RATE = 1e-3
NUM_EPOCHS = 2
CHECKPOINT_DIR = 'checkpoints'
CHECKPOINT_ITERATIONS = 2000
VGG_PATH = 'data/imagenet-vgg-verydeep-19.mat'
TRAIN_PATH = 'data/'  # 图片数据路径
BATCH_SIZE = 4
DEVICE = '/gpu:0'   # gpu 计算
FRAC_GPU = 1# 检测模型中的各个 参数是否已设置好
def check_opts(opts):exists(opts.checkpoint_dir, "checkpoint dir not found!")exists(opts.style, "style path not found!")exists(opts.train_path, "train path not found!")if opts.test or opts.test_dir:exists(opts.test, "test img not found!")exists(opts.test_dir, "test directory not found!")exists(opts.vgg_path, "vgg network data not found!")assert opts.epochs > 0assert opts.batch_size > 0assert opts.checkpoint_iterations > 0assert os.path.exists(opts.vgg_path)assert opts.content_weight >= 0assert opts.style_weight >= 0assert opts.tv_weight >= 0assert opts.learning_rate >= 0def _get_files(img_dir):files = list_files(img_dir)return [os.path.join(img_dir,x) for x in files]def main():parser = build_parser()options = parser.parse_args()check_opts(options)style_target = get_img(options.style)if not options.slow:content_targets = _get_files(options.train_path)elif options.test:content_targets = [options.test]kwargs = {"slow":options.slow,"epochs":options.epochs,"print_iterations":options.checkpoint_iterations,"batch_size":options.batch_size,"save_path":os.path.join(options.checkpoint_dir,'fns.ckpt'),"learning_rate":options.learning_rate}if options.slow:if options.epochs < 10:kwargs['epochs'] = 1000if options.learning_rate < 1:kwargs['learning_rate'] = 1e1args = [content_targets,style_target,options.content_weight,options.style_weight,options.tv_weight,options.vgg_path]for preds, losses, i, epoch in optimize(*args, **kwargs):style_loss, content_loss, tv_loss, loss = lossesprint('Epoch %d, Iteration: %d, Loss: %s' % (epoch, i, loss))to_print = (style_loss, content_loss, tv_loss)print('style: %s, content:%s, tv: %s' % to_print)if options.test:assert options.test_dir != Falsepreds_path = '%s/%s_%s.png' % (options.test_dir,epoch,i)if not options.slow:ckpt_dir = os.path.dirname(options.checkpoint_dir)evaluate.ffwd_to_img(options.test,preds_path,options.checkpoint_dir)else:save_img(preds_path, img)ckpt_dir = options.checkpoint_dircmd_text = 'python evaluate.py --checkpoint %s ...' % ckpt_dirprint("Training complete. For evaluation:\n    `%s`" % cmd_text)if __name__ == '__main__':main()

  VGG训练好的模型:
http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat

三. 测试代码,指定一种风格的model,测试便可生成混合图片

from __future__ import print_function
import sys
sys.path.insert(0, 'src')
import numpy as np, src.vgg, pdb, os
from src import transform
import scipy.misc
import tensorflow as tf
from src.utils import save_img, get_img, exists, list_files
from argparse import ArgumentParser
from collections import defaultdict
import time
import json
import subprocess
import numpyBATCH_SIZE = 4
DEVICE = '/gpu:0'def from_pipe(opts):command = ["ffprobe",'-v', "quiet",'-print_format', 'json','-show_streams', opts.in_path]info = json.loads(str(subprocess.check_output(command), encoding="utf8"))width = int(info["streams"][0]["width"])height = int(info["streams"][0]["height"])fps = round(eval(info["streams"][0]["r_frame_rate"]))command = ["ffmpeg",'-loglevel', "quiet",'-i', opts.in_path,'-f', 'image2pipe','-pix_fmt', 'rgb24','-vcodec', 'rawvideo', '-']pipe_in = subprocess.Popen(command, stdout=subprocess.PIPE, bufsize=10 ** 9, stdin=None, stderr=None)command = ["ffmpeg",'-loglevel', "info",'-y',  # (optional) overwrite output file if it exists'-f', 'rawvideo','-vcodec', 'rawvideo','-s', str(width) + 'x' + str(height),  # size of one frame'-pix_fmt', 'rgb24','-r', str(fps),  # frames per second'-i', '-',  # The imput comes from a pipe'-an',  # Tells FFMPEG not to expect any audio'-c:v', 'libx264','-preset', 'slow','-crf', '18',opts.out]pipe_out = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=None, stderr=None)g = tf.Graph()soft_config = tf.ConfigProto(allow_soft_placement=True)soft_config.gpu_options.allow_growth = Truewith g.as_default(), g.device(opts.device), \tf.Session(config=soft_config) as sess:batch_shape = (opts.batch_size, height, width, 3)img_placeholder = tf.placeholder(tf.float32, shape=batch_shape,name='img_placeholder')preds = transform.net(img_placeholder)saver = tf.train.Saver()if os.path.isdir(opts.checkpoint):ckpt = tf.train.get_checkpoint_state(opts.checkpoint)if ckpt and ckpt.model_checkpoint_path:saver.restore(sess, ckpt.model_checkpoint_path)else:raise Exception("No checkpoint found...")else:saver.restore(sess, opts.checkpoint)X = np.zeros(batch_shape, dtype=np.float32)nbytes = 3 * width * heightread_input = Truelast = Falsewhile read_input:count = 0while count < opts.batch_size:raw_image = pipe_in.stdout.read(width * height * 3)if len(raw_image) != nbytes:if count == 0:read_input = Falseelse:last = TrueX = X[:count]batch_shape = (count, height, width, 3)img_placeholder = tf.placeholder(tf.float32, shape=batch_shape,name='img_placeholder')preds = transform.net(img_placeholder)breakimage = numpy.fromstring(raw_image, dtype='uint8')image = image.reshape((height, width, 3))X[count] = imagecount += 1if read_input:if last:read_input = False_preds = sess.run(preds, feed_dict={img_placeholder: X})for i in range(0, batch_shape[0]):img = np.clip(_preds[i], 0, 255).astype(np.uint8)try:pipe_out.stdin.write(img)except IOError as err:ffmpeg_error = pipe_out.stderr.read()error = (str(err) + ("\n\nFFMPEG encountered""the following error while writing file:""\n\n %s" % ffmpeg_error))read_input = Falseprint(error)pipe_out.terminate()pipe_in.terminate()pipe_out.stdin.close()pipe_in.stdout.close()del pipe_indel pipe_out# get img_shape
def ffwd(data_in, paths_out, checkpoint_dir, device_t='/gpu:0', batch_size=4):assert len(paths_out) > 0is_paths = type(data_in[0]) == strif is_paths:assert len(data_in) == len(paths_out)img_shape = get_img(data_in[0]).shapeelse:assert data_in.size[0] == len(paths_out)# img_shape = X[0].shapeg = tf.Graph()batch_size = min(len(paths_out), batch_size)curr_num = 0soft_config = tf.ConfigProto(allow_soft_placement=True)soft_config.gpu_options.allow_growth = Truewith g.as_default(), g.device(device_t), tf.Session(config=soft_config) as sess:batch_shape = (batch_size,) + img_shapeimg_placeholder = tf.placeholder(tf.float32, shape=batch_shape,name='img_placeholder')preds = transform.net(img_placeholder)saver = tf.train.Saver()if os.path.isdir(checkpoint_dir):ckpt = tf.train.get_checkpoint_state(checkpoint_dir)if ckpt and ckpt.model_checkpoint_path:saver.restore(sess, ckpt.model_checkpoint_path)else:raise Exception("No checkpoint found...")else:saver.restore(sess, checkpoint_dir)num_iters = int(len(paths_out)/batch_size)for i in range(num_iters):pos = i * batch_sizecurr_batch_out = paths_out[pos:pos+batch_size]if is_paths:curr_batch_in = data_in[pos:pos+batch_size]X = np.zeros(batch_shape, dtype=np.float32)for j, path_in in enumerate(curr_batch_in):img = get_img(path_in)assert img.shape == img_shape, \'Images have different dimensions. ' +  \'Resize images or use --allow-different-dimensions.'X[j] = imgelse:X = data_in[pos:pos+batch_size]_preds = sess.run(preds, feed_dict={img_placeholder:X})for j, path_out in enumerate(curr_batch_out):save_img(path_out, _preds[j])remaining_in = data_in[num_iters*batch_size:]remaining_out = paths_out[num_iters*batch_size:]if len(remaining_in) > 0:ffwd(remaining_in, remaining_out, checkpoint_dir, device_t=device_t, batch_size=1)def ffwd_to_img(in_path, out_path, checkpoint_dir, device='/cpu:0'):paths_in, paths_out = [in_path], [out_path]ffwd(paths_in, paths_out, checkpoint_dir, batch_size=1, device_t=device)def ffwd_different_dimensions(in_path, out_path, checkpoint_dir, device_t=DEVICE, batch_size=4):in_path_of_shape = defaultdict(list)out_path_of_shape = defaultdict(list)for i in range(len(in_path)):in_image = in_path[i]out_image = out_path[i]shape = "%dx%dx%d" % get_img(in_image).shapein_path_of_shape[shape].append(in_image)out_path_of_shape[shape].append(out_image)for shape in in_path_of_shape:print('Processing images of shape %s' % shape)ffwd(in_path_of_shape[shape], out_path_of_shape[shape], checkpoint_dir, device_t, batch_size)def check_opts(opts):exists(opts.checkpoint_dir, 'Checkpoint not found!')exists(opts.in_path, 'In path not found!')if os.path.isdir(opts.out_path):exists(opts.out_path, 'out dir not found!')assert opts.batch_size > 0def build_parser():parser = ArgumentParser()parser.add_argument('--checkpoint', type=str,dest='checkpoint_dir',help='dir or .ckpt file to load checkpoint from',metavar='CHECKPOINT', required=True,default='./model/la_muse.ckpt')parser.add_argument('--in-path', type=str,dest='in_path',help='dir or file to transform',metavar='IN_PATH', required=True,default='./examples/content/stata.jpg')help_out = 'destination (dir or file) of transformed file or files'parser.add_argument('--out-path', type=str,dest='out_path', help=help_out, metavar='OUT_PATH',required=True,default='./')parser.add_argument('--device', type=str,dest='device',help='device to perform compute on',metavar='DEVICE', default=DEVICE)parser.add_argument('--batch-size', type=int,dest='batch_size',help='batch size for feedforwarding',metavar='BATCH_SIZE', default=BATCH_SIZE)parser.add_argument('--allow-different-dimensions', action='store_true',dest='allow_different_dimensions', help='allow different image dimensions')return parserdef main():parser = build_parser()opts = parser.parse_args()# 确认输入参数是否已存在,若不存在,重新创建check_opts(opts)if not os.path.isdir(opts.in_path):if os.path.exists(opts.out_path) and os.path.isdir(opts.out_path):# 获取图片的名称,作为输出图片名out_path = os.path.join(opts.out_path,os.path.basename(opts.in_path))else:out_path = opts.out_pathffwd_to_img(opts.in_path, out_path, opts.checkpoint_dir,device=opts.device)else:files = list_files(opts.in_path)full_in = [os.path.join(opts.in_path,x) for x in files]full_out = [os.path.join(opts.out_path,x) for x in files]if opts.allow_different_dimensions:ffwd_different_dimensions(full_in, full_out, opts.checkpoint_dir, device_t=opts.device, batch_size=opts.batch_size)else :ffwd(full_in, full_out, opts.checkpoint_dir, device_t=opts.device,batch_size=opts.batch_size)if __name__ == '__main__':main()

四.应用的神经网络模型

import tensorflow as tf, pdbWEIGHTS_INIT_STDEV = .1
# 网络结构
def net(image):conv1 = _conv_layer(image, 32, 9, 1)conv2 = _conv_layer(conv1, 64, 3, 2)conv3 = _conv_layer(conv2, 128, 3, 2)# 残差网络结构resid1 = _residual_block(conv3, 3)resid2 = _residual_block(resid1, 3)resid3 = _residual_block(resid2, 3)resid4 = _residual_block(resid3, 3)resid5 = _residual_block(resid4, 3)conv_t1 = _conv_tranpose_layer(resid5, 64, 3, 2)conv_t2 = _conv_tranpose_layer(conv_t1, 32, 3, 2)conv_t3 = _conv_layer(conv_t2, 3, 9, 1, relu=False)preds = tf.nn.tanh(conv_t3) * 150 + 255./2return predsdef _conv_layer(net, num_filters, filter_size, strides, relu=True):weights_init = _conv_init_vars(net, num_filters, filter_size)strides_shape = [1, strides, strides, 1]net = tf.nn.conv2d(net, weights_init, strides_shape, padding='SAME')net = _instance_norm(net)if relu:net = tf.nn.relu(net)return net# 反卷积操作
def _conv_tranpose_layer(net, num_filters, filter_size, strides):weights_init = _conv_init_vars(net, num_filters, filter_size, transpose=True) #True 反卷积batch_size, rows, cols, in_channels = [i.value for i in net.get_shape()]new_rows, new_cols = int(rows * strides), int(cols * strides)  # 反卷积变换# new_shape = #tf.pack([tf.shape(net)[0], new_rows, new_cols, num_filters])new_shape = [batch_size, new_rows, new_cols, num_filters] # 新的shapetf_shape = tf.stack(new_shape)strides_shape = [1,strides,strides,1]net = tf.nn.conv2d_transpose(net, weights_init, tf_shape, strides_shape, padding='SAME')net = _instance_norm(net)return tf.nn.relu(net)# 残差网络的 模块
def _residual_block(net, filter_size=3):tmp = _conv_layer(net, 128, filter_size, 1)return net + _conv_layer(tmp, 128, filter_size, 1, relu=False)# batch_normalization 模块
def _instance_norm(net, train=True):batch, rows, cols, channels = [i.value for i in net.get_shape()] # 特征图var_shape = [channels]# 当前特征图中的均值,方差mu, sigma_sq = tf.nn.moments(net, [1,2], keep_dims=True)shift = tf.Variable(tf.zeros(var_shape))scale = tf.Variable(tf.ones(var_shape))epsilon = 1e-3normalized = (net-mu)/(sigma_sq + epsilon)**(.5)return scale * normalized + shiftdef _conv_init_vars(net, out_channels, filter_size, transpose=False):_, rows, cols, in_channels = [i.value for i in net.get_shape()]if not transpose:weights_shape = [filter_size, filter_size, in_channels, out_channels]else:weights_shape = [filter_size, filter_size, out_channels, in_channels]   # 反卷积weights_init = tf.Variable(tf.truncated_normal(weights_shape, stddev=WEIGHTS_INIT_STDEV, seed=1), dtype=tf.float32)return weights_init

由于代码过多,不易全部展示,完整Demo参加GitHub链接:

https://github.com/Whq123/Style-transfer-of-picture

这篇关于Tensorflow实现图片StyleTransfer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939333

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja