Windows +TensorFlow+Faster Rcnn 详细安装步骤(一)

2024-04-26 23:48

本文主要是介绍Windows +TensorFlow+Faster Rcnn 详细安装步骤(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


2020年更新:感谢大家的关注,这两篇安装教程是我自己当初踩坑后记录下来方便查看的。如果你是做深度学习研究刚刚入门,建议去学习新的tensorflow2.0以及models,或者Pytorch。因为这个教程用到的tensorflow版本低,而且用的Faster RCNN代码功能也欠缺,比如计算PR之类的。但如果只是项目中需要使用一下,按照教程无脑按照也是可以的。


Windows下Python版本TensorFlow需要Python  3.5支持,因此建议使用Anaconda,避免和原本电脑Python版本冲突等问题。(另外,你完全可以按照这个流程来,但如果你想偷懒,Windows +TensorFlow+Faster Rcnn整个安装过程中需要的所有安装包和数据我都传到了云盘里,大概有4个G内容,最后有获取方式。)

1.安装Anaconda

下载地址:链接,选择支持Python3.5且与自己电脑位数一样的Windows版本,如果不清楚,可以参考这个网站上各版本说明,anaconda 3 默认的是python3.6,下载下来也可以,之后可以在虚拟环境里面更改python版本。

下载完成后双击exe安装,到下面这个界面时,第一个框打钩,把conda添加到环境变量,第二个不勾,如下图,这样就不会更改原本Python默认版本了。

安装完成后,在cmd中输入conda,出现以下界面,表示安装成功。

我下载的是这个版本,安装后发现Anaconda3这个版本默认是py3.6的,而我需要python3.5的,可以在新建虚拟环境时选择python版本。

2.新建tensorflow虚拟环境

在cmd中输入

conda create -n tensorflow python=3.5

这样就建立了一个叫做tensorflow的虚拟环境,且python版本为3.5,之后的所有工作都是在这个环境下完成的,激活虚拟环境,在cmd中使用命令

activate tensorflow,关闭虚拟环境,使用命令:deactivate 

3.选择TensorFlow版本

TensorFlow有CPU版本和GPU版本,GPU版本使用显卡,硬件要求较高,但计算效率高,如果要安装GPU版本(需要有NVIDIA显卡),一般是推荐使用性能好的服务器,但你可能需要知道自己电脑是否支持GPU,GPU显存是多少,如何查看自己的电脑是否支持GPU,在cmd命令中输入:

cd C:\Program Files\NVIDIA Corporation\NVSMI
nvidia-smi

就可以看到自己的显卡型号和显存大小,个人建议显存大于4GB的话可以考虑GPU版本的TensorFlow,不然老老实实用CPU版本的,就是训练时间长一些,不然到时候会报错OOM(out of memory)

若使用GPU版本的TensorFlow,还需要安装CUDA和cudnn,比CPU版本的TensorFlow安装复杂很多,本文以GPU版本TensorFlow为例。注意:如果使用CPU版本的TensorFlow,请跳过步骤4。

4.安装GPU版本依赖

主要是安装CUDA和cudnn,注意两者版本有对应依赖关系,本文选择使用的是CUDA 8.0和cudnn 6.0

安装CUDA

CUDA 8.0安装地址:链接

打开后需要先用邮箱注册,然后下载时会让选择你自己电脑系统的版本等内容,注意看清楚下载的是CUDA 8.0版本,因为注册之后再登录时会默认跳转到CUDA最新版本的下载页面。

下载后双击exe进行安装即可,安装完成后检验是否安装成功:在cmd中输入命令

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\extras\demo_suite
bandwidthTest.exe

结果如下图,显示 Result = PASS表明安装成功!

安装cudnn 6.0

cudnn 6.0下载地址:链接

页面中选择下载的内容如下

下载后的内容解压,可以看到有下面这样三个文件夹,将文件夹中的文件分别复制到CUDA安装目录下对应的文件夹中,例如本机CUDA的安装目录为 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0,然后在目录下也能找到这三个文件夹名字,把cudnn里面的拷贝到相应目录下即可。每个文件夹下其实也就一个文件

这样,cuda和cudnn就安装好了。

5.安装TensorFlow

首先激活虚拟环境

activate tensorflow

GPU版本TensorFlow安装cmd命令:

pip install --ignore-installed --upgrade tensorflow-gpu

CPU版本TensorFlow安装cmd命令:

pip install --ignore-installed --upgrade tensorflow

安装完成后检查是否安装成功

python
import tensorflow as tf

此时如果报错:ImportError: Could not find 'cudart64_90.dll'...

解决办法:

如果你是安装的GPU版本的,首先考虑TensorFlow安装版本是否与CUDA匹配,CUDA8.0网上一般都是和TensorFlow1.3搭配的,使用命令conda list,查看版本,如下图,可以发现TensorFlow版本不合适,默认安装的版本过高

卸载tensorflow-gpu,安装1.3版本的,命令如下:

pip uninstall tensorflow-gpupip install –-upgrade https://mirrors.tuna.tsinghua.edu.cn/tensorflow/windows/gpu/tensorflow_gpu-1.3.0rc0-cp35-cp35m-win_amd64.whl

安装成功后,再来检验一下,可以查看tensorflow的安装版本和安装位置

import tensorflow as tftf.__version__tf.__path__

如下图所示,tensorflow安装成功!

注:如果更改成1.3版本后还是报错,还是找不到cuda相关的dll,建议重新配置环境变量,计算机右键属性,在系统环境变量中,添加以下内容:

以下所有路径都基于CUDA默认安装位置,请以你自己实际安装的为准!

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0
CUDA_LIB_PATH = %CUDA_PATH%\lib\x64 
CUDA_BIN_PATH = %CUDA_PATH%\bin 
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64 
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64

然后在系统变量 PATH 的末尾添加:(记得分号是英文的) 
%CUDA_LIB_PATH%;%CUDA_BIN_PATH%;%CUDA_SDK_LIB_PATH%;%CUDA_SDK_BIN_PATH%; 
再添加如下路径: 
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64; 
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin; 
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\common\lib\x64; 
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\bin\win64; 

保存后,再试试能不能正确加载tensorflow。

以上就是Windows下tensorflow框架安装详细流程。整个流程中可能用到的软件安装包和数据都传到了云盘,关注微信公众号:TechGIS,后台回复“tensorflow”即可获取,谢谢关注!

faster rcnn算法将在下一篇文章里介绍。

Windows 下 TensorFlow 和 Faster rcnn 详细安装步骤(二)

这篇关于Windows +TensorFlow+Faster Rcnn 详细安装步骤(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939002

相关文章

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

java向微信服务号发送消息的完整步骤实例

《java向微信服务号发送消息的完整步骤实例》:本文主要介绍java向微信服务号发送消息的相关资料,包括申请测试号获取appID/appsecret、关注公众号获取openID、配置消息模板及代码... 目录步骤1. 申请测试系统2. 公众号账号信息3. 关注测试号二维码4. 消息模板接口5. Java测试

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h