FPGA实现AXI4总线的读写_如何写axi4逻辑

2024-04-26 14:04

本文主要是介绍FPGA实现AXI4总线的读写_如何写axi4逻辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FPGA实现AXI4总线的读写_如何写axi4逻辑

一、AXI4 接口描述

通道

信号

信号描述

全局信号

aclk

主机

全局时钟

aresetn

主机

全局复位,低有效

写通道地址与控制信号通道

M_AXI_WR_awid[3:0]

主机

写地址ID,用来标志一组写信号

M_AXI_WR_awaddr[31:0]

主机

写地址,给出一次写突发传输的写地址

M_AXI_WR_awlen[7:0]

主机

突发长度,给出突发传输的次数

M_AXI_WR_awsize[2:0]

主机

突发大小,给出每次突发传输的字节数

M_AXI_WR_awburst[1:0]

主机

突发类型

M_AXI_WR_awlock

主机

总线锁信号,可提供操作的原子性

M_AXI_WR_awcache[3:0]

主机

内存类型,表明一次传输是怎样通过系统的

M_AXI_WR_awprot[2:0]

主机

保护类型,表明一次传输的特权级及安全等级

M_AXI_WR_awqos[3:0]

主机

质量服务QoS

M_AXI_WR_awvalid

主机

有效信号,表明此通道的地址控制信号有效

M_AXI_WR_awready

从机

表明“从”可以接收地址和对应的控制信号

写通道数据通道

M_AXI_WR_wdata[63:0]

主机

写数据

M_AXI_WR_wstrb[7:0]

主机

写数据有效的字节线,用来表明哪8bits数据是有效的

M_AXI_WR_wlast

主机

表明此次传输是最后一个突发传输

M_AXI_WR_wvalid

主机

写有效,表明此次写有效

M_AXI_WR_wready

从机

表明从机可以接收写数据

写通道响应通道

M_AXI_WR_bid[3:0]

从机

写响应ID TAG

M_AXI_WR_bresp[1:0]

从机

写响应,表明写传输的状态

M_AXI_WR_bvalid

从机

写响应有效

M_AXI_WR_bready

主机

表明主机能够接收写响应

读通道地址与控制信号通道

M_AXI_RD_arid[3:0]

主机

读地址ID,用来标志一组写信号

M_AXI_RD_araddr[31:0]

主机

读地址,给出一次写突发传输的读地址

M_AXI_RD_arlen[7:0]

主机

突发长度,给出突发传输的次数

M_AXI_RD_arsize[2:0]

主机

突发大小,给出每次突发传输的字节数

M_AXI_RD_arburst[1:0]

主机

突发类型

M_AXI_RD_arlock[1:0]

主机

总线锁信号,可提供操作的原子性

M_AXI_RD_arcache[3:0]

主机

内存类型,表明一次传输是怎样通过系统的

M_AXI_RD_arprot[2:0]

主机

保护类型,表明一次传输的特权级及安全等级

M_AXI_RD_arqos[3:0]

主机

质量服务QOS

M_AXI_RD_arvalid

主机

有效信号,表明此通道的地址控制信号有效

M_AXI_RD_arready

从机

表明“从”可以接收地址和对应的控制信号

读通道数据通道

M_AXI_RD_rid[3:0]

从机

读IDtag

M_AXI_RD_rdata[63:0]

从机

读数据

M_AXI_RD_rresp[1:0]

从机

读响应,表明读传输的状态

M_AXI_RD_rlast

从机

表明读突发的最后一次传输

M_AXI_RD_rvalid

从机

表明此通道信号有效

M_AXI_RD_rready

主机

表明主机能够接收读数据和响应信息

二、地址通道的控制信号与地址描述

1、地址ID

AWID[3:0]与ARID[3:0]:对于只有一个主机从机设备,该值可设置为任意

2、地址结构

AWADDR[31:0]与ARADDR[31:0]:AXI协议是基于burst(突发)的,主机只给出突发传输的第一个字节的地址,从机必须计算突发传输后续的地址。突发传输不能跨4KB边界(防止突发跨越两个从机的边界,也限制了从机所需支持的地址自增数

3、突发长度

AWLEN[7:0]与ARLEN[7:0]:ARLEN[7:0]决定读传输的突发长度,AWLEN[7:0]决定写传输的突发长度。AXI4扩展突发长度支持INCR突发类型为1256次传输,对于其他的传输类型依然保持116次突发传输(Burst_Length=AxLEN[7:0]+1)

4、突发大小

ARSIZE[2:0],读突发传输;AWSIZE[2:0],写突发传输。

AxSIZE[2:0]

传输字节大小

3'b000

1

3'b001

2

3'b010

4

3'b011

8

3'b100

16

3'b101

32

3'b110

64

3'b111

128

5、突发类型

AWBURST[1:0]与ARBURST[1:0]:

AxBURST[1:0]

突发类型

2'b00

FIXED

2'b01

INCR

2'b10

WRAP

2'b11

Reserved

FIXED:突发传输过程中地址固定,用于FIFO访问

INCR:增量突发,传输过程中,地址递增。增加量取决AxSIZE的值

WRAP:回环突发,和增量突发类似,但会在特定高地址的边界处回到低地址处。回环突发的长度只能是2,4,8,16次传输,传输首地址和每次传输的大小对齐。最低的地址整个传输的数据大小对齐。回环边界等于(AxSIZE*AxLEN)

三、数据通道信号描述

1、WDATA与RDATA:写与读数据线信号

WSTRB:有效字节,WSTRB[n:0]对应于对应的写字节,WSTRB[n]对应WDATA[8n+7:8n],也就是对于的数据宽度的字节数是否有效。WVALID为低时,WSTRB可以为任意值,WVALID为高时,WSTRB为高的字节线必须指示有效的数据。对于一般应用,将WSTRB全部置1即可,保证全部数据有效。读通道无该信号。

2、WLAST与RLAST

写与读最后一个字节,拉高表示传输最后一个字节,也意味着传输结束

3、burst[1:0]

描述读写相应结构

burst[1:0]

00

常规访问成功

01

独占访问成功

10

从机错误

11

解码错误

四、突发写时序:

AXI4突发写可以分为7个状态,写空闲,写通道写地址等待,写通道写地址,写数据等待,写数据循环,接受写应答,写结束这7种状态。之所以划分为7个状态是为了后续写程序的状态机做准备。

7种状态

1、写空闲:等待触发突发信号

2、写通道写地址等待:准备好写地址AWADDR,然后拉高AWVALID。

3、写通道写地址:从机接受到AWVALID,发出AWREADY。

4、写数据等待:准备好数据WDATA,拉高WVALID。

5、写数据循环:从机接受WVALID,确认数据WDATA有效并且接受,发出WREADY,AXI是突发传输:循环该操作到接受到WLAST最后一个数据标志位。

6、接受写应答:接受到从机发出的BVALID,主机发出BREADY。

7、写结束:拉低未拉低的信号,进入写空闲

五、突发读时序

AXI4突发读可以分为6个状态,读空闲,读通道写地址等待,读通道写地址,读数据等待,读数据循环,读结束这6种状态。之所以划分为6个状态是为了后续写程序的状态机做准备。

6种状态

1、读空闲:等待触发突发信号。

2、读通道写地址等待:准备好写地址ARADDR,然后拉高ARVALID。

3、读通道写地址:从机接受到ARVALID,发出ARREADY。

4、读数据等待:从机准备好数据WDATA,从机拉高RVALID。

5、读数据循环:主机接受RVALID,确认数据RDATA有效并且接受,发出RREADY给从机,AXI是突发传输:循环该操作到接受到RLAST最后一个数据标志位

6、读结束:拉低未拉低的信号,进入读空闲

注:

1、读数据必须总是跟在与其数据相关联的地址之后。

2、写响应必须总是跟在与其相关联的写事务的最后出现。

六、写时序状态机

七、写时序代码

module axi4_write(input               clk             ,input               resetn          ,input               enable_write    ,  //写使能input  [31:0]       w_addr          ,  //地址input  [63:0]       w_data          ,  //数据output reg          write_done      ,  //写完成output reg          write_data      ,  //表示数据写入,突发模式下可用于切换数据的指示信号//axi4写通道地址通道output  [3:0]       m_axi_awid      , //写地址ID,用来标志一组写信号output reg[31:0]    m_axi_awaddr    ,//写地址,给出一次写突发传输的写地址 output [7:0]        m_axi_awlen     , //突发长度,给出突发传输的次数 output [2:0]        m_axi_awsize    , //突发大小,给出每次突发传输的字节数 output [1:0]        m_axi_awburst   , //突发类型 output              m_axi_awlock    , //总线锁信号,可提供操作的原子性 output [3:0]        m_axi_awcache   , //内存类型,表明一次传输是怎样通过系统的output [2:0]        m_axi_awprot    , //保护类型,表明一次传输的特权级及安全等级 output [3:0]        m_axi_awqos     , //质量服务QoSoutput reg          m_axi_awvalid   , //有效信号,表明此通道的地址控制信号有效 input               m_axi_awready   , //表明“从”可以接收地址和对应的控制信号//axi4写通道数据通道output reg[63:0]    m_axi_wdata     , //写数据 output [7:0]        m_axi_wstrb     , //写数据有效的字节线 output reg          m_axi_wlast     , //表明此次传输是最后一个突发传输output reg          m_axi_wvalid    , //写有效,表明此次写有效input               m_axi_wready    , //表明从机可以接收写数据 //axi4写通道应答通道 input [3:0]         m_axi_bid       , //写响应ID TAGinput [1:0]         m_axi_bresp     , //写响应,表明写传输的状态input               m_axi_bvalid    , //写响应有效output reg          m_axi_bready      //表明主机能够接收写响应);//*******************参数*****************************localparam  W_IDLEW     = 3'b001    ; //空闲等待localparam  W_DRIVEW    = 3'b011    ; //准备、取地址localparam  W_HANDS     = 3'b010    ; //握手localparam  W_WSTBR     = 3'b110    ; //突发localparam  W_WAIT      = 3'b111    ; //等待结束的信息localparam  W_END       = 3'b101    ; //写数据阶段parameter   LEN_NUM     = 1         ;parameter   AWID        = 0         ;
//*********内部信号******************************reg  [2:0]  state ,   next_state   ;reg         wready_over            ;reg  [7:0]  len                    ;assign  m_axi_awid    = AWID[3:0] ;    // [3:0]  //写地址ID,用来标志一组写信号  assign  m_axi_awlen   = LEN_NUM-1 ;    // [7:0]  //突发长度,给出突发传输的次数  assign  m_axi_awsize  = 3'b011    ;    // [2:0]  //突发大小,给出每次突发传输的字节数  assign  m_axi_awburst = 2'b10     ;    // [1:0]  //突发类型  assign  m_axi_awlock  = 1'b0      ;    //        //总线锁信号,可提供操作的原子性  assign  m_axi_awcache = 4'b0010   ;    // [3:0]  //内存类型,表明一次传输是怎样通过系统的 assign  m_axi_awprot  = 3'b000    ;    // [2:0]  //保护类型,表明一次传输的特权级及安全等级 assign  m_axi_awqos   = 4'b0000   ;    // [3:0]  //质量服务QoS assign  m_axi_wstrb   = 8'hff     ;//状态机always @(*) beginstate   =   next_state    ;end    always @(posedge clk or negedge resetn) beginif(!resetn) beginwready_over<=0;endelse if(state==W_IDLEW || state==W_END )wready_over<=0;else if(m_axi_wready)wready_over<=1;endalways @(posedge clk or negedge resetn) beginif(!resetn) beginnext_state  <=  W_IDLEW   ;len <=0 ;endelse case(state)W_IDLEW :   if(enable_write) next_state <= W_DRIVEW  ;  else next_state<=W_IDLEW    ;W_DRIVEW:   if(m_axi_awready) beginnext_state <= W_HANDS ; len<=LEN_NUM-1          ; end else next_state<=W_DRIVEW   ;W_HANDS :   if(wready_over && len==0)next_state <= W_WAIT ;  else   if(wready_over ) next_state <= W_WSTBR   ;else next_state<=W_HANDS  ;W_WSTBR :   if(len==1)       next_state <= W_WAIT ;  else begin next_state <= W_WSTBR ;len <=len-1           ;endW_WAIT  :   next_state<=W_END ;  W_END   :   if(m_axi_bvalid)next_state <= W_IDLEW  ;  else next_state<=W_END    ;default :   next_state<=W_IDLEW ;endcase   end// 组合逻辑输出always @(* ) begincase(state)W_IDLEW :   beginm_axi_wlast    =   0        ;m_axi_awaddr   =   0        ;m_axi_awvalid  =   0        ;m_axi_wdata    =   0        ;m_axi_wvalid   =   0        ;m_axi_bready   =   0        ;write_done     =   0        ;write_data     =   0        ;endW_DRIVEW:   beginm_axi_wlast    =   0       ;m_axi_awaddr   =   w_addr  ;m_axi_awvalid  =   1       ;m_axi_wdata    =   0       ;m_axi_wvalid   =   0       ;m_axi_bready   =   0       ;write_done     =   0       ;write_data     =   0       ;endW_HANDS :   beginm_axi_wlast    =   0       ;m_axi_awaddr   =   0       ;m_axi_awvalid  =   0       ;m_axi_wdata    =   0       ;m_axi_wvalid   =   0       ;m_axi_bready   =   0       ;write_done     =   0       ;write_data     =   0       ;endW_WSTBR :   beginm_axi_wlast    =   0       ;m_axi_awaddr   =   0       ;m_axi_awvalid  =   0       ;m_axi_wdata    =   w_data  ;m_axi_wvalid   =   1       ;m_axi_bready   =   0       ;write_done     =   0       ;write_data     =   1       ;endW_WAIT  :   beginm_axi_wlast    =   1       ;m_axi_awaddr   =   0       ;m_axi_awvalid  =   0       ;m_axi_wdata    =   w_data  ;m_axi_wvalid   =   1       ;m_axi_bready   =   0       ;write_done     =   1       ;write_data     =   1       ;endW_END   :   beginm_axi_wlast    =   0       ;m_axi_awaddr   =   0       ;m_axi_awvalid  =   0       ;m_axi_wdata    =   0       ;m_axi_wvalid   =   0       ;m_axi_bready   =   1       ;write_done     =   0       ;write_data     =   0       ;enddefault :   beginm_axi_wlast    =   0   ;m_axi_awaddr   =   0   ;m_axi_awvalid  =   0   ;m_axi_wdata    =   0   ;m_axi_wvalid   =   0   ;m_axi_bready   =   0   ;write_done     =   0   ;write_data     =   0   ;endendcaseend
endmodule

八、读时序状态机

九、读时序代码

module axi4_read(input               resetn          ,//axi复位 input               clk             ,  //axi时钟 input               enable_read     ,output              read_data       ,output              read_done       ,input       [31:0]  r_addr          ,output  reg [63:0]  r_data          ,//axi读通道写地址 output     [3:0]   m_axi_arid      , //读地址ID,用来标志一组写信号output reg [31:0]  m_axi_araddr    , //读地址,给出一次写突发传输的读地址output     [7:0]   m_axi_arlen     , //突发长度,给出突发传输的次数output     [2:0]   m_axi_arsize    , //突发大小,给出每次突发传输的字节数output     [1:0]   m_axi_arburst   , //突发类型output     [1:0]   m_axi_arlock    , //总线锁信号,可提供操作的原子性output     [3:0]   m_axi_arcache   , //内存类型,表明一次传输是怎样通过系统的 output     [2:0]   m_axi_arprot    , //保护类型,表明一次传输的特权级及安全等级output     [3:0]   m_axi_arqos     , //质量服务QOS output reg         m_axi_arvalid   , //有效信号,表明此通道的地址控制信号有效 input              m_axi_arready   , //表明“从”可以接收地址和对应的控制信号//axi读通道读数据 input      [3:0]   m_axi_rid       , //读ID tag input      [63:0]  m_axi_rdata     , //读数据 input      [1:0]   m_axi_rresp     , //读响应,表明读传输的状态input              m_axi_rlast     , //表明读突发的最后一次传输input              m_axi_rvalid    , //表明此通道信号有效 output reg         m_axi_rready      //表明主机能够接收读数据和响应信息);
//localparam [2:0] R_IDLER      =  3'b001   ;localparam [2:0] R_WAIT       =  3'b011   ;localparam [2:0] R_BURST      =  3'b010   ;localparam [2:0] R_END        =  3'b110   ;parameter  ARID   = 0    ;parameter  RD_LEN = 1    ;
//reg [2:0] state , next_state    ;reg          rvalid_over    ;
//    assign m_axi_arid      = ARID[3:0]      ;//地址id assign m_axi_arlen     = RD_LEN-32'd1   ;//突发长度assign m_axi_arsize    = 3'b011         ;//表示AXI总线每个数据宽度是8字节,64位 assign m_axi_arburst   = 2'b01          ;//地址递增方式传输assign m_axi_arlock    = 1'b0           ;assign m_axi_arcache   = 4'b0010        ; assign m_axi_arprot    = 3'b000         ;assign m_axi_arqos     = 4'b0000        ;assign read_data       =  m_axi_rvalid  ;assign read_done       = m_axi_rlast    ;
//axi读状态机always @(*) beginstate   =   next_state  ;end//always @(posedge clk  or negedge resetn) beginif(!resetn) beginrvalid_over <=0  ;end else if(state==R_IDLER) beginrvalid_over <=0  ;endelse if(m_axi_rvalid)beginrvalid_over <= 1 ;endendalways @(posedge clk or negedge resetn) beginif(!resetn)next_state <= R_IDLER;else    case(state)R_IDLER  :  if(enable_read) next_state <= R_WAIT ;else next_state<=R_IDLER   ; R_WAIT   :  if(m_axi_arready) next_state<=R_BURST  ;else next_state<=R_WAIT  ;  R_BURST  :  if(m_axi_rlast)  next_state<=R_END    ;else next_state  <=  R_BURST ;R_END    :  if(rvalid_over) next_state<=R_IDLER;else next_state<=R_END ;  default  :  next_state<=R_IDLER ;endcaseend//always @(*) begincase(state)R_IDLER  :  beginm_axi_araddr  = 0       ;  m_axi_arvalid = 0       ;  m_axi_rready  = 0       ;  r_data        = 0       ;  end R_WAIT   :  beginm_axi_araddr  = r_addr      ;  m_axi_arvalid = 1           ;  m_axi_rready  = 0           ;  r_data        = 0           ;    end             R_BURST  :  beginm_axi_araddr  = 0           ;  m_axi_arvalid = 0           ;  m_axi_rready  = 1           ;  r_data        = m_axi_rdata ;      end   R_END    :  beginm_axi_araddr  = 0           ;  m_axi_arvalid = 0           ;  m_axi_rready  = 1           ;  r_data        = 0           ;     end default  :  beginm_axi_araddr  = 0           ;  m_axi_arvalid = 0           ;  m_axi_rready  = 0           ;  r_data        = 0           ;     end endcaseendendmodule

这篇关于FPGA实现AXI4总线的读写_如何写axi4逻辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937777

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too