LLM长度外推——位置插值(llama/baichuan)

2024-04-26 13:52

本文主要是介绍LLM长度外推——位置插值(llama/baichuan),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

位置插值(position Interpolation, PI)通过将超出训练长度的位置索引等比例缩小,映射到模型已经学习的位置范围内,实现长度外推。
好处是不用重新训练,直接在推理时加入。

llama的实现方式

论文提出 Extending Context Window of Large Language Models via Positional Interpolation
llama采用Rope位置编码,因此其实现都是针对rope编码的位置插值。

官方实现的代码:

https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L148

class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""def forward(self, x, position_ids):# difference to the original RoPE: a scaling factor is aplied to the position idsposition_ids = position_ids.float() / self.scaling_factorcos, sin = super().forward(x, position_ids)return cos, sin

Super-HOT项目的实现

位置插值原理介绍: https://kaiokendev.github.io/til#extending-context-to-8k

源代码:https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test/blob/main/llama_rope_scaled_monkey_patch.py

class ScaledRotaryEmbedding(torch.nn.Module):def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):super().__init__()inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))self.register_buffer("inv_freq", inv_freq)max_position_embeddings = 8192# Build here to make `torch.jit.trace` work.self.max_seq_len_cached = max_position_embeddingst = torch.arange(self.max_seq_len_cached,device=self.inv_freq.device,dtype=self.inv_freq.dtype,)# These two lines:self.scale = 1 / 4t *= self.scale

参考:
1.https://zhuanlan.zhihu.com/p/679147878
2.https://blog.csdn.net/v_JULY_v/article/details/135072211
3.https://kaiokendev.github.io/til#extending-context-to-8k

百川的实现方式

百川13B的位置编码是Alibi。因此是针对Alibi的长度外推。
有测试表明外推最大长度大约是训练的8倍时可以达到最佳性能:评论区
实现代码和步骤:
https://github.com/seanzhang-zhichen/baichuan-Dynamic-NTK-ALiBi

参考:
1.https://zhuanlan.zhihu.com/p/657161287
2.https://zhuanlan.zhihu.com/p/647628295

这篇关于LLM长度外推——位置插值(llama/baichuan)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937760

相关文章

MySQL 获取字符串长度及注意事项

《MySQL获取字符串长度及注意事项》本文通过实例代码给大家介绍MySQL获取字符串长度及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 获取字符串长度详解 核心长度函数对比⚠️ 六大关键注意事项1. 字符编码决定字节长度2

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

springboot项目打jar制作成镜像并指定配置文件位置方式

《springboot项目打jar制作成镜像并指定配置文件位置方式》:本文主要介绍springboot项目打jar制作成镜像并指定配置文件位置方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录一、上传jar到服务器二、编写dockerfile三、新建对应配置文件所存放的数据卷目录四、将配置文

python3如何找到字典的下标index、获取list中指定元素的位置索引

《python3如何找到字典的下标index、获取list中指定元素的位置索引》:本文主要介绍python3如何找到字典的下标index、获取list中指定元素的位置索引问题,具有很好的参考价值,... 目录enumerate()找到字典的下标 index获取list中指定元素的位置索引总结enumerat

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

PyCharm如何更改缓存位置

《PyCharm如何更改缓存位置》:本文主要介绍PyCharm如何更改缓存位置的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录PyCharm更改缓存位置1.打开PyCharm的安装编程目录2.将config、sjsystem、plugins和log的路径

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

Java实现按字节长度截取字符串

《Java实现按字节长度截取字符串》在Java中,由于字符串可能包含多字节字符,直接按字节长度截取可能会导致乱码或截取不准确的问题,下面我们就来看看几种按字节长度截取字符串的方法吧... 目录方法一:使用String的getBytes方法方法二:指定字符编码处理方法三:更精确的字符编码处理使用示例注意事项方

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p