深度学习-自动求导

2024-04-26 13:04
文章标签 学习 深度 自动 求导

本文主要是介绍深度学习-自动求导,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 向量链式法则
    • 标量链式法则
  • 拓展到向量
    • 例题1
    • 例题2
  • 符号求导
  • 数值求导
  • 自动求导
    • 计算图
    • 自动求导的两种模式
      • 链式法则
      • 正向累积(从x出发)
      • 反向累积(反向传递--先计算最终的函数即y)
      • 反向累积总结
  • 自动求导
  • 计算y关于x的梯度,使用requires_grad(True)
    • 计算y
  • 通过调用反向传播函数来自动计算y关于x每个分量的梯度
  • PyTorch会累积梯度,使用zero_()函数清除梯度
  • 批量中每个样本单独计算的偏导数之和
  • 将某些计算移动到记录的计算图之外
  • 即使构建函数的计算图通过Python控制流仍可以计算变量的梯度
  • 问题
    • 多个loss(损失函数)分别反向的时候是不是需要累积梯度?
    • 需要正向和反向都要算一遍吗?
    • 为什么Pytorch会默认累积梯度?
    • 为什么获取.grad前需要backward?

向量链式法则

标量链式法则

在这里插入图片描述




拓展到向量

在这里插入图片描述




例题1

在这里插入图片描述

过程:
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述





例题2

在这里插入图片描述

过程:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
然后将分解的回代




符号求导

在这里插入图片描述

数值求导

在这里插入图片描述

自动求导

自动求导计算一个函数在指定值上的导数

计算图

将代码分解为操作子
将计算表示成一个无环图
在这里插入图片描述
显示构造
在这里插入图片描述
隐式构造
在这里插入图片描述




自动求导的两种模式

链式法则

在这里插入图片描述

正向累积(从x出发)

在这里插入图片描述

反向累积(反向传递–先计算最终的函数即y)

在这里插入图片描述

这里的反向先计算z的函数
在这里插入图片描述




反向累积总结

构造计算图
前向:执行图,存储中间结果
反向:从相反方向执行图
去除不需要的枝

在这里插入图片描述

计算复杂度:O(n),n是操作子个数
通常正向和方向的代价类似
内存复杂度:O(n),因为需要存储正向的所有中间结果

正向累积:
它的内存复杂度是O(1),即不管多深我不需要存储它的结果,而反向累积则需要存储。

反向从根节点向下扫,可以保证每个节点只扫一次;
正向从叶节点向上扫,会导致上层节点可能需要被重复扫多次。

(正向中 子节点比父节点先计算,因此也无法像反向那样把本节点的计算结果传给每个子节点。)




自动求导

假设我们对函数 y=2 x T x^T xTx 求导

import torch
x = torch.arange(4.0)
print(x)

结果:在这里插入图片描述




计算y关于x的梯度,使用requires_grad(True)

import torch
x = torch.arange(4.0, requires_grad=True)
print(x.grad)

结果:在这里插入图片描述

计算y

import torch
x = torch.arange(4.0, requires_grad=True)
y = 2 * torch.dot(x, x)
print(y)

结果:在这里插入图片描述




通过调用反向传播函数来自动计算y关于x每个分量的梯度

import torch
x = torch.arange(4.0, requires_grad=True)
print(x)
y = 2 * torch.dot(x, x)
y.backward() #求导
print(x.grad) #x.grad访问导数

结果:在这里插入图片描述
y=2 x 2 x^2 x2然后使用求导函数backward()实质是y导=4x(下面验证)。

import torch
x = torch.arange(4.0, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward() #求导
print(x.grad == 4*x)

结果:在这里插入图片描述




PyTorch会累积梯度,使用zero_()函数清除梯度

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零
y = x.sum()
y.backward() #求导
print(x.grad)

因为求向量的sum()所以梯度是全1
y是标量
y是对x的的求和:y= x 1 x_1 x1+ x 2 x_2 x2+ x 3 x_3 x3+ x 4 x_4 x4
对y进行x的偏导:dy/ d x 1 dx_1 dx1,dy/ d x 2 dx_2 dx2,dy/ d x 3 dx_3 dx3,dy/ d x 4 dx_4 dx4

在这里插入图片描述




批量中每个样本单独计算的偏导数之和

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x*x #x是向量,y即向量
print(y) #输出查看
y.sum().backward() #求导
print(x.grad)

梯度(求导)清零:必须先存在梯度,如果没有y.backward()则x.grad.zero_()会报错。
结果:在这里插入图片描述




将某些计算移动到记录的计算图之外

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x * x #x是向量,y即向量
print(y) #输出查看
u = y.detach()#把y当作一个常数,而不是关于x的函数,把它做成u
z = u * x #相当于z=常数*x
z.sum().backward()
print(x.grad == u)

结果:这里的z就是为了后续求导检查是否与detach()后一致。
在这里插入图片描述


import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x * x #x是向量,y即向量
y.sum().backward()
print(x.grad == 2 * x)

结果:
在这里插入图片描述




即使构建函数的计算图通过Python控制流仍可以计算变量的梯度

import torchdef f(a):b = a * 2while b.norm() < 1000:#norm()计算张量的范数, 计算了张量 b 的L2范数b = b * 2if b.sum(): #检查 b 所有元素的总和是否非零c = b #非0的时候的操作else:c = 100 * breturn ca = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()
print(a.grad == d / a) #梯度验证

结果:在这里插入图片描述




问题

多个loss(损失函数)分别反向的时候是不是需要累积梯度?

是的

需要正向和反向都要算一遍吗?

是的

为什么Pytorch会默认累积梯度?

设计上的理念,通常一个大的批量无法一次计算出,所以分为多次,然后累加起来。

为什么获取.grad前需要backward?

不进行backward时不会计算梯度,因为计算梯度是一个很“贵”的事情

这篇关于深度学习-自动求导的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937658

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired