关于Linux nanosleep函数时间(时钟)精度的测试

2024-04-26 03:58

本文主要是介绍关于Linux nanosleep函数时间(时钟)精度的测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时钟机制是驱动Linux内核运转的核心组件,他的工作方式有两种,periodic(周期性的)和NO_HZ_FULL(IDLE).在不同的模式下,时钟周期的精度是不同的,下面做实验验证一下.

测试用例如下,pselect不传入文件列表参数,将导致等待超时返回,行为上和一个定时器没有任何区别。

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<sys/time.h>
#include<errno.h>
#include<string.h>
#include<unistd.h>
#include<sys/types.h>
#include<sys/select.h>int main(int argc, char **argv)
{unsigned int nTimeTestSec = 0;unsigned int nTimeTest = 0;struct timeval tvBegin;struct timeval tvNow;int ret = 0;unsigned int nDelay = 0;struct timeval tv;int fd = 1;int i = 0;struct timespec req;unsigned int delay[20] = {500000, 100000, 50000, 10000, 1000, 900, 500, 100, 10, 1, 0};int nReduce = 0; //误差fprintf(stderr, "%19s%12s%12s%12s\n", "fuction", "time(usec)", "realtime", "reduce");fprintf(stderr, "----------------------------------------------------\n");for (i = 0; i < 20; i++){if (delay[i] <= 0)break;nDelay = delay[i];//test sleepgettimeofday(&tvBegin, NULL);ret = usleep(nDelay);if(ret == -1){fprintf(stderr, "usleep error, errno=%d [%s]\n", errno, strerror(errno));}gettimeofday(&tvNow, NULL);nTimeTest = (tvNow.tv_sec - tvBegin.tv_sec) * 1000000 + tvNow.tv_usec - tvBegin.tv_usec;nReduce = nTimeTest - nDelay;fprintf (stderr, "\t usleep       %8u   %8u   %8d\n", nDelay, nTimeTest,nReduce);//test nanosleepreq.tv_sec = nDelay/1000000;req.tv_nsec = (nDelay%1000000) * 1000;gettimeofday(&tvBegin, NULL);ret = nanosleep(&req, NULL);if (-1 == ret){fprintf (stderr, "\t nanousleep   %8u   not support\n", nDelay);}gettimeofday(&tvNow, NULL);nTimeTest = (tvNow.tv_sec - tvBegin.tv_sec) * 1000000 + tvNow.tv_usec - tvBegin.tv_usec;nReduce = nTimeTest - nDelay;fprintf (stderr, "\t nanosleep    %8u   %8u   %8d\n", nDelay, nTimeTest,nReduce);//test selecttv.tv_sec = 0;tv.tv_usec = nDelay;gettimeofday(&tvBegin, NULL);ret = select(0, NULL, NULL, NULL, &tv);if (-1 == ret){fprintf(stderr, "select error. errno = %d [%s]\n", errno, strerror(errno));}gettimeofday(&tvNow, NULL);nTimeTest = (tvNow.tv_sec - tvBegin.tv_sec) * 1000000 + tvNow.tv_usec - tvBegin.tv_usec;nReduce = nTimeTest - nDelay;fprintf (stderr, "\t select       %8u   %8u   %8d\n", nDelay, nTimeTest,nReduce);//pselcetreq.tv_sec = nDelay/1000000;req.tv_nsec = (nDelay%1000000) * 1000;gettimeofday(&tvBegin, NULL);ret = pselect(0, NULL, NULL, NULL, &req, NULL);if (-1 == ret){fprintf(stderr, "select error. errno = %d [%s]\n", errno, strerror(errno));}gettimeofday(&tvNow, NULL);nTimeTest = (tvNow.tv_sec - tvBegin.tv_sec) * 1000000 + tvNow.tv_usec - tvBegin.tv_usec;nReduce = nTimeTest - nDelay;fprintf (stderr, "\t pselect      %8u   %8u   %8d\n", nDelay, nTimeTest,nReduce);fprintf (stderr, "--------------------------------\n");}return 0;
}

在使用高精度定时器的情况下测试开关PREEMPT的情况:

关闭CONFIG_PREEMPT的情况下

打开CONFIG_PREEMPT

重新编译和安装内核:

貌似改善不多,可以得出CONFIG_PREEMPT和精度关系不大的结论,我们继续.打开周期定时器:

关闭高精度定时器:

运行用例验证,可以明显发现,由于时钟模式变为periodic的了,时钟粒度瞬间缩减为4ms=4000us,所以例子中即便睡眠1个us,也需要等到4ms后才会被唤醒,和没有打开periodic的模式有显著区别.超时时间将ceiling到系统时钟粒度。

CONFIG_HZ修改为100,看有没有变化:

重新编译内核,发现时钟粒度再次变大,CONFIG_HZ从250变为100. 时钟粒度则从4ms变为10ms成反比关系.

打开CONFIG_HIGH_RES_TIMERS

重新编译,运行用例:

可以看到,打开高精度定时器,时间精度恢复了原始的比较精确的误差范围.

关闭CONFIG_NO_HZ

发现时间精度仍然是高精度的范围

所以看起来,控制高精度定时器的是CONFIG_HIGH_RES_TIMERS.

线程优先级对于时钟精度的影响

测试代码:

#include <iostream>
#include <chrono>
#include<thread>
#include <pthread.h>
using namespace std;int get_thread_info(void)
{pthread_t self = pthread_self();int policy;struct sched_param param;if (pthread_getschedparam(self, &policy, &param) != 0) {printf("%s line %d, pthread_getschedparam error.\n",__func__, __LINE__);return -1;}switch (policy) {case SCHED_FIFO:printf("SCHED_FIFO\n");break;case SCHED_RR:printf("SCHED_RR\n");break;case SCHED_OTHER:printf("SCHED_OTHER\n");break;default:printf("unknown.\n");break;}printf("current thread priority:%d\n", param.sched_priority);return 0;
}void adjust_priority(void)
{struct sched_param params;params.sched_priority = 50;  // 50是优先级值,可以根据需求设置if(pthread_setschedparam(pthread_self(), SCHED_RR, &params) != 0) {printf("%s line %d, error, failure.\n", __func__, __LINE__);} else {printf("%s line %d, set priority success.\n", __func__, __LINE__);}get_thread_info();return;
}int main(void)
{int nTimerValue = 100; //wait for 100 msadjust_priority();for (int i = 0; /*i < 500*/; ++i) {auto start = std::chrono::steady_clock::now();std::this_thread::sleep_for(std::chrono::microseconds(nTimerValue));auto clock_end = std::chrono::steady_clock::now();long lElapsetimeMs = std::chrono::duration_cast<std::chrono::microseconds>(clock_end - start).count();char szBuff[255];sprintf(szBuff, "[%d] slept Time: %ld MiroSec\n", i, lElapsetimeMs);cout << szBuff;}cout << "system clock          : ";cout << chrono::system_clock::period::num << "/" << chrono::system_clock::period::den << "s" << endl;cout << "steady clock          : ";cout << chrono::steady_clock::period::num << "/" << chrono::steady_clock::period::den << "s" << endl;cout << "high resolution clock : ";cout << chrono::high_resolution_clock::period::num << "/" << chrono::high_resolution_clock::period::den << "s" << endl;system("pause");return 0;
}

编译代码:

      g++ xxx.c -lpthread

在CFS调度器的情况下,睡眠100微妙,实际上的睡眠事件可能在150+

设置RR优先级,用SUDO模式运行,时间精度缩小到如下值:

c++标准中的sleep_for用的就是nanosleep:

在musl中,usleep就是用nanosleep实现的:

打开CONFIG_HIGH_RES_TIMERS和关闭下,HRTIMER唤醒的区别

CONFIG_HIGH_RES_TIMERS打开:

CONFIG_HZ_PERIODIC打开,CONFIG_HIGH_RES_TIMERS关闭,则hrtimer_wakeup在周期中断下调度:

CONFIG_HZ_PERIODIC关闭,CONFIG_HIGH_RES_TIMERS关闭,CONFIG_NO_HZ_FULL关闭,CONFIG_NO_HZ_IDLE=y。

CONFIG_NO_HZ_FULL=y,CONFIG_HZ_PERIODIC关闭,CONFIG_NO_HZ_IDLE关闭,CONFIG_HIGH_RES_TIMERS关闭。

CONFIG_NO_HZ_FULL/CONFIG_NO_HZ_IDLE/CONFIG_HZ_PERIODIC 是互斥关系,只能三选1。

CONFIG_HZ配置

关于CONFIG_HZ的影响,以REDHAT企业版为例,RH企业版的CONFIG_HZ参数设置为1000,而其他服务器发行版,比如UBUNTU是250,这样运行RH的系统会有比较大的系统时钟负荷,在某些场景下,会影响场景的效率,一种解决方案是在启动参数中设置divider=xx,意思是1/XX的CONFIG_HZ 频率,详细解释如下:


参考文档

【Linux C/C++ 延时(延迟)函数比较】介绍Linux系统中常用的延时函数sleep、usleep、nanosleep、select和std::sleep_for()的区别和使用场景-CSDN博客

结束!

这篇关于关于Linux nanosleep函数时间(时钟)精度的测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936658

相关文章

Linux搭建单机MySQL8.0.26版本的操作方法

《Linux搭建单机MySQL8.0.26版本的操作方法》:本文主要介绍Linux搭建单机MySQL8.0.26版本的操作方法,本文通过图文并茂的形式给大家讲解的非常详细,感兴趣的朋友一起看看吧... 目录概述环境信息数据库服务安装步骤下载前置依赖服务下载方式一:进入官网下载,并上传到宿主机中,适合离线环境

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Linux之systemV共享内存方式

《Linux之systemV共享内存方式》:本文主要介绍Linux之systemV共享内存方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、工作原理二、系统调用接口1、申请共享内存(一)key的获取(二)共享内存的申请2、将共享内存段连接到进程地址空间3、将

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

快速修复一个Panic的Linux内核的技巧

《快速修复一个Panic的Linux内核的技巧》Linux系统中运行了不当的mkinitcpio操作导致内核文件不能正常工作,重启的时候,内核启动中止于Panic状态,该怎么解决这个问题呢?下面我们就... 感谢China编程(www.chinasem.cn)网友 鸢一雨音 的投稿写这篇文章是有原因的。为了配置完

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中