使用sobel算子提取图片轮廓

2024-04-26 03:58

本文主要是介绍使用sobel算子提取图片轮廓,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码:

import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
import tensorflow as tf  myimg = mpimg.imread('img.jpg') # 读取和代码处于同一目录下的图片
plt.imshow(myimg) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
print(myimg.shape)full=np.reshape(myimg,[1,500,500,3])  
inputfull = tf.Variable(tf.constant(1.0,shape = [1, 500, 500, 3]))filter =  tf.Variable(tf.constant([[-1.0,-1.0,-1.0],  [0,0,0],  [1.0,1.0,1.0],[-2.0,-2.0,-2.0], [0,0,0],  [2.0,2.0,2.0],[-1.0,-1.0,-1.0], [0,0,0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))                                    op = tf.nn.conv2d(inputfull, filter, strides=[1, 1, 1, 1], padding='SAME') #3个通道输入,生成1个feature ma
o=tf.cast(  ((op-tf.reduce_min(op))/(tf.reduce_max(op)-tf.reduce_min(op)) ) *255 ,tf.uint8)with tf.Session() as sess:  sess.run(tf.global_variables_initializer()  )  t,f=sess.run([o,filter],feed_dict={ inputfull:full})#print(f)t=np.reshape(t,[500,500]) plt.imshow(t,cmap='Greys_r') # 显示图片plt.axis('off') # 不显示坐标轴plt.show()
def conv2d(x, W):return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

在学习tensorflow看到卷积这部分时,不明白这里的4个参数是什么意思,文档里面也没有具体说明。strides在官方定义中是一个一维具有四个元素的张量,其规定前后必须为1,所以我们可以改的是中间两个数,中间两个数分别代表了水平滑动和垂直滑动步长值。

    在卷积核移动逐渐扫描整体图时候,因为步长的设置问题,可能导致剩下未扫描的空间不足以提供给卷积核的,大小扫描 比如有图大小为5*5,卷积核为2*2,步长为2,卷积核扫描了两次后,剩下一个元素,不够卷积核扫描了,这个时候就在后面补零,补完后满足卷积核的扫描,这种方式就是same。如果说把刚才不足以扫描的元素位置抛弃掉,就是valid方式。

效果:

使用拉普拉斯算子处理,效果不是很明显:

import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
import tensorflow as tf  myimg = mpimg.imread('img.jpg') # 读取和代码处于同一目录下的图片
plt.imshow(myimg) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
print(myimg.shape)full=np.reshape(myimg,[1,500,500,3])  
inputfull = tf.Variable(tf.constant(1.0,shape = [1, 500, 500, 3]))
#
#filter =  tf.Variable(tf.constant([[-1.0,-1.0,-1.0],  [0,0,0],  [1.0,1.0,1.0],
#                                    [-2.0,-2.0,-2.0], [0,0,0],  [2.0,2.0,2.0],
#                                    [-1.0,-1.0,-1.0], [0,0,0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))   
filter =  tf.Variable(tf.constant([    [1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0],[1.0,1.0,1.0], [-8.0,-8.0,-8.0],[1.0,1.0,1.0],[1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))                                 op = tf.nn.conv2d(inputfull, filter, strides=[1, 1, 1, 1], padding='SAME') #3个通道输入,生成1个feature ma
o=tf.cast(  ((op-tf.reduce_min(op))/(tf.reduce_max(op)-tf.reduce_min(op)) ) *255 ,tf.uint8)with tf.Session() as sess:  sess.run(tf.global_variables_initializer()  )  t,f=sess.run([o,filter],feed_dict={ inputfull:full})#print(f)t=np.reshape(t,[500,500]) plt.imshow(t,cmap='Greys_r') # 显示图片plt.axis('off') # 不显示坐标轴plt.show()

结果:

 sobel是一阶微分算子,而拉普拉斯是二阶微分算子,所以同一张图片经过处理后,输出结果不同。

可以将模型保存为ckpt格式

import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
import tensorflow as tf  saver = tf.train.Saver()
myimg = mpimg.imread('img.jpg') # 读取和代码处于同一目录下的图片
plt.imshow(myimg) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
print(myimg.shape)full=np.reshape(myimg,[1,500,500,3])  
inputfull = tf.Variable(tf.constant(1.0,shape = [1, 500, 500, 3]))
#
#filter =  tf.Variable(tf.constant([[-1.0,-1.0,-1.0],  [0,0,0],  [1.0,1.0,1.0],
#                                    [-2.0,-2.0,-2.0], [0,0,0],  [2.0,2.0,2.0],
#                                    [-1.0,-1.0,-1.0], [0,0,0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))   
filter =  tf.Variable(tf.constant([    [1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0],[1.0,1.0,1.0], [-8.0,-8.0,-8.0],[1.0,1.0,1.0],[1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))                                 op = tf.nn.conv2d(inputfull, filter, strides=[1, 1, 1, 1], padding='SAME') #3个通道输入,生成1个feature ma
o=tf.cast(  ((op-tf.reduce_min(op))/(tf.reduce_max(op)-tf.reduce_min(op)) ) *255 ,tf.uint8)with tf.Session() as sess:sess.run(tf.global_variables_initializer()  )  t,f=sess.run([o,filter],feed_dict={ inputfull:full})#print(f)t=np.reshape(t,[500,500]) plt.imshow(t,cmap='Greys_r') # 显示图片plt.axis('off') # 不显示坐标轴plt.show()saver.save(sess, "model/linear")with tf.Session() as sess2:sess2.run(tf.global_variables_initializer())saver.restore(sess2, "model/linear")sess2.run([o,filter],feed_dict={ inputfull:full})

 保存为CKPT格式的模型:

模型有很多种格式,其它的有比如ONNX,PB等等,日后慢慢总结。

结束!

这篇关于使用sobel算子提取图片轮廓的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936651

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND