利用傅立叶变换进行图像处理的代码演示

2024-04-26 03:32

本文主要是介绍利用傅立叶变换进行图像处理的代码演示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面有篇文件介绍过使用DCT(离散余弦)变换进行图像处理的例子:

Matlab一探DCT/IDCT变换在图像压缩中的应用_tugouxp的专栏-CSDN博客绝大多数图像都有一个共同特征,平坦区域和内容缓慢变化的区域占据一幅图像的大部分,而细节区域和内容突变区域则占小部分。也可以说,图像中直流和低频区占大部分,高频区占小部分,zhe'yang...https://blog.csdn.net/tugouxp/article/details/117585190这里介绍用离散傅立叶变换进行图像处理的代码演示。

方法和思路:

 关于傅立叶变换的实践,可以参考这篇文章:

图说Fourier变换_tugouxp的专栏-CSDN博客_fourier变换如同熟知的泰勒级数一样,Fourierhttps://blog.csdn.net/tugouxp/article/details/113485640傅立叶变换就是将一个信号曲线分解成若干个正弦曲线,这些正弦的频率代表了原信号曲线的频率变化情况,总的来说就是对原来信号曲线上的不同频率的信号进行分门别类,同一频率下的信号被分到了一个正弦曲线上,这样就有了若干个不同频率的正弦曲线了,而这些正弦曲线中,有些是我们需要的信息,而有些是不需要的信息,我们把不重要的信息过滤掉,即可得到我们想要的信息。

代码演示:

高频滤波操作:

#-*- coding:utf-8 -*-
import numpy
import cv2
import matplotlib.pyplot as plt
import osprint (os.getcwd())#获得当前目录
print (os.path.abspath('.'))#获得当前工作目录#DFT:离散傅里叶变换'
# 2.OpenCV中的 DFT(Discrete Fourier Transform) 离散傅里叶变换
img = cv2.imread("./3.jpg")
# 0.转化为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
rows, cols = gray.shape# 1.DFT离散傅里叶变换: 空域--〉频域
dft = cv2.dft(src=numpy.float32(gray), flags=cv2.DFT_COMPLEX_OUTPUT)  # src为灰度图,并且是numpy.float32类型
print(dft.shape)#两个通道# 2.中心化: 将低频移动到图像中心
fftshift = numpy.fft.fftshift(dft)
# 获取振幅谱(展示图片用): numpy.log()是为了将值限制在[0, 255]
magnitude_spectrum = numpy.log(cv2.magnitude(fftshift[:, :, 0], fftshift[:, :, 1]))# 3.滤波操作之低通滤波(去高频,保低频)
mask = numpy.zeros((rows, cols,2), dtype=numpy.uint8)
mask[(rows // 2 - 30): (rows // 2 + 30), (cols // 2 - 30): (cols // 2 + 30)] = 1
fftshift = fftshift * mask# 4.去中心化: 将低频和高频的位置还原
ifftshift = numpy.fft.ifftshift(fftshift)# 5.逆傅里叶变换: 频域--〉空域
idft = cv2.idft(ifftshift)# 6.二维向量取模(幅值)
img_back = cv2.magnitude(idft[:, :, 0], idft[:, :, 1])# 结合matplotlib展示多张图片
plt.figure(figsize=(10, 10))
plt.subplot(221), plt.imshow(gray, cmap="gray"), plt.title("Input Gray Image")
plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(magnitude_spectrum, cmap="gray"), plt.title("Magnitude Spectrum")
plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(img_back, cmap="gray"), plt.title("Image after LPF")
plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(img_back), plt.title("Result in JET")  # 默认cmap='jet'
plt.xticks([]), plt.yticks([])
plt.show()

lena大妈已经快70岁了,这张照片原本是刊登在playboy杂志的一张照片,而且是一张全身裸照(是不是突然很开心),估计大妈本人也没有想到自己年轻时的玉照在全世界的程序员和算法工程中间流传吧。

运行效果,

通过上面案例,我们直观地感受到了傅立叶变换在图像去噪方面的实际效果,去掉了高频信号后,无论是灰度图,还是默认色彩图,图像的轮廓都会被软化,界限变得模糊,这是由于图像的噪声以及边缘部位往往梯度变化较大,而梯度较大的地方属于高频信号,所以在去噪的同时会软化图像边缘。

接下来我们进行一个反向操作,也就是图像高通滤波操作,即去低频信号,留高频信号,看看处理后的图像最终有什么变化。我们这次以numpy中的快速傅立叶变换为例来实现图像高通滤波操作:

import numpy
import cv2
import matplotlib.pyplot as plt
import osimg = cv2.imread("./3.jpg")
# 0.转化为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
rows, cols = gray.shape
print(gray.shape)# 1.FFT快速傅里叶变换: 空域--〉频域
fft = numpy.fft.fft2(gray)  # 傅里叶变换,参数为灰度图
print(fft.shape)# 2.中心化: 将低频信号移动到图像中心
fftshift = numpy.fft.fftshift(fft)
print(numpy.min(numpy.abs(fftshift)))#绝对最低频率信号
print(numpy.max(fftshift),numpy.min(fftshift))#最高频率信号,最低频率信号
# 获取振幅谱(展示图片用): numpy.log()是为了将值压缩在[0, 255]附近
magnitude_spectrum = numpy.log(numpy.abs(fftshift))
print(numpy.max(magnitude_spectrum),numpy.min(magnitude_spectrum))# 3.滤波操作之高通滤波(去低频,保高频)
fftshift[rows // 2 - 50:rows // 2 + 50, cols // 2 - 50: cols // 2 + 50] = 0
# print(fftshift.shape)# 4.去中心化: 将剩余的低频和高频的位置还原
ifftshift = numpy.fft.ifftshift(fftshift)# 5.逆傅里叶变换: 频域--〉空域
ifft = numpy.fft.ifft2(ifftshift)
# print(ifft)# 6.二维向量取模(幅值)
img_back = numpy.abs(ifft)#结合matplotlib展示多张图片
plt.figure(figsize=(10, 10))
plt.subplot(221), plt.imshow(gray, cmap="gray"), plt.title("Input Gray Image")
plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(magnitude_spectrum, cmap="gray"), plt.title("Magnitude Spectrum")
plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(img_back, cmap="gray"), plt.title("Image after HPF")
plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(img_back), plt.title("Result in JET")  # 默认cmap='jet'
plt.xticks([]), plt.yticks([])
plt.show()

运行效果:

频谱中的亮线 证明空域中有 与亮线方向垂直的边缘,因为频谱上每个点所代表的正弦波方向是固定的 x轴上的正弦波就是传播方向向x轴的波

空域的一条亮线 如果是竖直 就是x方向有突变 换到一维 就像一个方波 理论上是无穷多个不同频率正弦波的叠加 从小到大都有,所以x轴上所有点 即频率都有值 结果是一条亮线。

图像高通滤波的效果和低通滤波效果刚好相反,从上面案例的结果来看,高通滤波的操作会使图像失去更多的背景细节部分,只保留了图像相应的轮廓界面。这是因为背景部分的图像梯度变化相对轮廓部分的梯度变化较小,图像梯度变化较小的这部分属于低频信号,去除掉这部分低频信号,会使得图像缺少过渡,边缘显得生硬,当去除过多的低频信号时,甚至会让图像变成一副边缘轮廓图。

既然我们能够通过傅立叶变换对图像进行高通滤波或低通滤波的操作,那么同样也能对图像进行指定任意频段的滤波操作,比如中通滤波就是保留图像中间指定频段的数据,去除高频数据和低频数据的操作,而阻滞滤波刚好是去除图像中间指定频段的数据,保留高频和低频数据。

FFT变换为什么会出现亮十字?

我觉得是由于空域的图像实际是乘以了矩形窗rect(x)rect(y)的,所以在频域中心会出现sinc条纹,每条暗线实际上是如下的函数:

因为每幅图像都有一个举行的边缘突变部分,反映到频谱上就是两条垂直的亮线交于中心点,中心点是直流部分。

想要验证的话很容易,只要设计一副纯色图片,不对的缩小纯色的范围,保留边缘,看亮线何时出现以及出现的规律即可验证。


结束!

这篇关于利用傅立叶变换进行图像处理的代码演示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936600

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代