Hbase中二级索引与Phoenix二级索引实现

2024-04-25 11:12

本文主要是介绍Hbase中二级索引与Phoenix二级索引实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、引入

HBase本身只提供基于行键和全表扫描的查询,而行键索引单一,对于多维度的查询困难。

所以我们引进一个二级索引的概念。二级索引的本质就是建立各列值与行键之间的映射关系

图解:

 

2、常见实现二级索引的方案:

HBase的一级索引就是rowkey,我们只能通过rowkey进行检索。如果我们相对hbase里面列族的列列进行一些组合查询,就需要采用HBase的二级索引方案来进行多条件的查询。

  1. MapReduce方案

  2. ITHBASE(Indexed-Transanctional HBase)方案

  3. IHBASE(Index HBase)方案

  4. Hbase Coprocessor(协处理器)方案

  5. Solr+hbase方案或 redis+hbase 方案

  6. CCIndex(complementalclustering index)方案

下面我们用代码来实现MapReduce方案与redis+hbase 方案

三、MapReduce方案实现

使用整合MapReduce的方式创建hbase索引。主要的流程如下:

1、扫描输入表,使用hbase继承类TableMapper

2、获取rowkey和指定字段名称和字段值

3、创建Put实例, value=” “, rowkey=班级,column=学号

4、使用IdentityTableReducer将数据写入索引表

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.regionserver.BloomType;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;/*** 使用整合MapReduce的方式创建hbase索引。主要的流程如下:* 1.1扫描输入表,使用hbase继承类TableMapper* 1.2获取rowkey和指定字段名称和字段值* 1.3创建Put实例, value=” “, rowkey=班级,column=学号* 1.4使用IdentityTableReducer将数据写入索引表*/
//因为我们现在要读取的数据来自于hbase中的hfile文件,与hdfs上普通的block块文件有所区别,不能直接继承Mapper类
//要继承hbase读取数据专属的Mapper类     TableMapper
//public abstract class TableMapper<KEYOUT, VALUEOUT> extends Mapper<ImmutableBytesWritable, Result, KEYOUT, VALUEOUT>
class MyIndexMapper extends TableMapper<Text, NullWritable> {@Overrideprotected void map(ImmutableBytesWritable key, Result value, Mapper<ImmutableBytesWritable, Result, Text, NullWritable>.Context context) throws IOException, InterruptedException {//ImmutableBytesWritable key --相当于是读取到一行的行键//Result value --相当于读取到一行多列的封装//获取行键String id = Bytes.toString(key.get());//获取姓名的列值String name = Bytes.toString(value.getValue(Bytes.toBytes("info"), Bytes.toBytes("name")));//将学号和姓名拼接起来给到reduce,由reduce处理并写入到到索引表中context.write(new Text(id + "-" + name), NullWritable.get());}
}//public abstract class TableReducer<KEYIN, VALUEIN, KEYOUT> extends Reducer<KEYIN, VALUEIN, KEYOUT, Mutation>
class MyIndexReducer extends TableReducer<Text, NullWritable, NullWritable> {@Overrideprotected void reduce(Text value, Iterable<NullWritable> values, Reducer<Text, NullWritable, NullWritable, Mutation>.Context context) throws IOException, InterruptedException {String string = value.toString();String id = string.split("-")[0];String name = string.split("-")[1];//将要添加的数据封装成Put类的对象Put put = new Put(Bytes.toBytes(name));put.addColumn(Bytes.toBytes("info"),Bytes.toBytes(id),Bytes.toBytes(""));context.write(NullWritable.get(), put);}
}public class HBaseIndexDemo1 {public static void main(String[] args) throws Exception {//创建配置文件对象Configuration conf = new Configuration();//指定zookeeper的配置信息conf.set("hbase.zookeeper.quorum", "master:2181,node1:2181,node2:2181");//创建Job作业对象Job job = Job.getInstance(conf);job.setJobName("给学生表创建二级索引表");job.setJarByClass(HBaseIndexDemo1.class);//因为索引表的构建是建立列值与行键的映射关系,要获取所有的数据//scan扫描全表数据Scan scan = new Scan();//告诉输入的列值来自于哪一个列簇scan.addFamily(Bytes.toBytes("info"));//先将表名封装成一个TableName的对象Connection conn = ConnectionFactory.createConnection(conf);Admin admin = conn.getAdmin();//先将表名封装成一个TableName的对象TableName tn = TableName.valueOf("students2_index");if (!admin.tableExists(tn)) {TableDescriptorBuilder studentsIndex = TableDescriptorBuilder.newBuilder(tn);//使用另外一种方式创建列簇并设置布隆过滤器ColumnFamilyDescriptor columnFamilyDescriptor = ColumnFamilyDescriptorBuilder.newBuilder(Bytes.toBytes("info")).setBloomFilterType(BloomType.ROW).build();studentsIndex.setColumnFamily(columnFamilyDescriptor);admin.createTable(studentsIndex.build());System.out.println(tn + "表创建成功!!!");} else {System.out.println(tn + "表已经存在!");}//索引表是执行完MR作业后产生的/**/*** Use this before submitting a TableMap job. It will appropriately set up* the job.** @param table  The table name to read from.* @param scan  The scan instance with the columns, time range etc.* @param mapper  The mapper class to use.* @param outputKeyClass  The class of the output key.* @param outputValueClass  The class of the output value.* @param job  The current job to adjust.  Make sure the passed job is* carrying all necessary HBase configuration.* @throws IOException When setting up the details fails.*public static void initTableMapperJob* (String table,Scan scan,Class<? extends TableMapper> mapper,Class<?> outputKeyClass,Class<?> outputValueClass,Job job)*/TableMapReduceUtil.initTableMapperJob("students2", scan, MyIndexMapper.class, Text.class, NullWritable.class, job);TableMapReduceUtil.initTableReducerJob("students2_index", MyIndexReducer.class, job);//提交作业到集群中允许boolean b = job.waitForCompletion(true);if (b) {System.out.println("================== students2索引表构建成功!!!============================");} else {System.out.println("================== students2索引表构建失败!!!============================");}}
}

四、使用redis第三方的存储工具存储hbase索引

import com.shujia.utils.HBaseUtil;
import org.apache.hadoop.hbase.CompareOperator;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.BinaryComparator;
import org.apache.hadoop.hbase.filter.ValueFilter;
import org.apache.hadoop.hbase.util.Bytes;
import redis.clients.jedis.Jedis;import java.util.Scanner;
import java.util.Set;/*使用redis第三方的存储工具存储hbase索引(本质依旧是列值与行键产生映射关系)*/
public class HBaseWithRedisIndex {//1、获取hbase数据库连接对象和操作对象static Connection conn = HBaseUtil.CONNECTION;static Admin admin = HBaseUtil.ADMIN;//获取redis连接对象static Jedis jedis = new Jedis("192.168.19.100", 12346);public static void main(String[] args) throws Exception {//步骤1:在redis中构建映射关系(性别:学号)
//        buildIndexInRedis();//使用:先通过查询redis中性别对应的学号,拿着学号去hbase原表中查询获取结果Scanner sc = new Scanner(System.in);System.out.println("请输入您要查询的性别:");String gender = sc.next();selectGenderFromHbase(gender);}public static void selectGenderFromHbase(String gender) throws Exception {if ("男".equals(gender)) {selectIdFromRedis(gender);} else if ("女".equals(gender)) {selectIdFromRedis(gender);} else {System.out.println("没有该性别");}}//单独编写一个方法查询redispublic static void selectIdFromRedis(String gender) throws Exception {Table students2 = conn.getTable(TableName.valueOf("students2"));Set<String> ids = jedis.smembers("性别:"+gender);for (String id : ids) {Result result = students2.get(new Get(Bytes.toBytes(id)).addColumn(Bytes.toBytes("info"), Bytes.toBytes("name")));String name = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("name")));System.out.println("学号:" + id + ",姓名:" + name);}}public static void buildIndexInRedis() throws Exception {//获取要构建索引的原表Table students2 = conn.getTable(TableName.valueOf("students2"));Scan scan = new Scan();//获取男生的学号,放入到redis中//创建列值过滤器ValueFilter filter1 = new ValueFilter(CompareOperator.EQUAL, new BinaryComparator(Bytes.toBytes("男")));scan.setFilter(filter1);ResultScanner resultScanner = students2.getScanner(scan);for (Result result : resultScanner) {//获取每一行的行键即可String id = Bytes.toString(result.getRow());//将学号以值的方式添加到redis键对应的值中//因为男生的学号有很多个,且不重复,所以我们在redis中采用set的数据类型存储jedis.sadd("性别:男", id);}//获取男生的学号,放入到redis中//创建列值过滤器ValueFilter filter2 = new ValueFilter(CompareOperator.EQUAL, new BinaryComparator(Bytes.toBytes("女")));scan.setFilter(filter2);ResultScanner resultScanner2 = students2.getScanner(scan);for (Result result : resultScanner2) {//获取每一行的行键即可String id = Bytes.toString(result.getRow());//将学号以值的方式添加到redis键对应的值中//因为男生的学号有很多个,且不重复,所以我们在redis中采用set的数据类型存储jedis.sadd("性别:女", id);}}
}

五、Phoenix二级索引

1、开启索引支持

# 在hbase-site.xml中增加如下配置

<property>
  <name>hbase.regionserver.wal.codec</name>
  <value>org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec</value>
</property>
<property>
    <name>hbase.rpc.timeout</name>
    <value>60000000</value>
</property>
<property>
    <name>hbase.client.scanner.timeout.period</name>
    <value>60000000</value>
</property>
<property>
    <name>phoenix.query.timeoutMs</name>
    <value>60000000</value>
</property>


# 同步到所有节点
scp hbase-site.xml node1:`pwd`
scp hbase-site.xml node2:`pwd`

# 修改phoenix目录下的bin目录中的hbase-site.xml
<property>
    <name>hbase.rpc.timeout</name>
    <value>60000000</value>
</property>
<property>
    <name>hbase.client.scanner.timeout.period</name>
    <value>60000000</value>
</property>
<property>
    <name>phoenix.query.timeoutMs</name>
    <value>60000000</value>
</property>

-------------------------------------------------------------------------------------------------------------------------
# 启动hbase
start-hbase.sh
# 重新进入phoenix客户端
sqlline.py master,node1,node2

2、索引的种类及其实现方式

2.1、全局索引

        全局索引适合读多写少的场景。如果使用全局索引,读数据基本不损耗性能,所有的性能损耗都来源于写数据。数据表的添加、删除和修改都会更新相关的索引表(数据删除了,索引表中的数据也会删除;数据增加了,索引表的数据也会增加)  

        注意: 对于全局索引在默认情况下,在查询语句中检索的列如果不在索引表中,Phoenix不会使用索引表将,除非使用hint

手机号 进入网格的时间 离开网格的时间 区县编码 经度 纬度 基站标识 网格编号 业务类型

# 创建DIANXIN.sql
CREATE TABLE IF NOT EXISTS DIANXIN (
     mdn VARCHAR ,
     start_date VARCHAR ,
     end_date VARCHAR ,
     county VARCHAR,
     x DOUBLE ,
     y  DOUBLE,
     bsid VARCHAR,
     grid_id  VARCHAR,
     biz_type VARCHAR, 
     event_type VARCHAR , 
     data_source VARCHAR ,
     CONSTRAINT PK PRIMARY KEY (mdn,start_date)
) column_encoded_bytes=0;

# 上传数据DIANXIN.csv

# 导入数据
psql.py master,node1,node2 DIANXIN.sql DIANXIN.csv

# 创建全局索引
CREATE INDEX DIANXIN_INDEX ON DIANXIN ( end_date );

# 查询数据 ( 索引未生效)
select * from DIANXIN where end_date = '20180503154014';

# 强制使用索引 (索引生效) hint  语法糖
select /*+ INDEX(DIANXIN DIANXIN_INDEX) */  * from DIANXIN where end_date = '20180503154014';

select /*+ INDEX(DIANXIN DIANXIN_INDEX) */  * from DIANXIN where end_date = '20180503154014'  and start_date = '20180503154614';

# 取索引列,(索引生效)
select end_date from DIANXIN where end_date = '20180503154014';

# 创建多列索引
CREATE INDEX DIANXIN_INDEX1 ON DIANXIN ( end_date,COUNTY );

# 多条件查询 (索引生效)
select end_date,MDN,COUNTY from DIANXIN where end_date = '20180503154014' and COUNTY = '8340104';

# 查询所有列 (索引未生效)
select  * from DIANXIN where end_date = '20180503154014'  and COUNTY = '8340104';

# 查询所有列 (索引生效)
select /*+ INDEX(DIANXIN DIANXIN_INDEX1) */ * from DIANXIN where end_date = '20180503154014' and COUNTY = '8340104';

# 单条件  (索引未生效)
select end_date from DIANXIN where  COUNTY = '8340103';
# 单条件  (索引生效) end_date 在前
select COUNTY from DIANXIN where end_date = '20180503154014';

# 删除索引
drop index DIANXIN_INDEX on DIANXIN;

2.2、本地索引

        本地索引适合写多读少的场景,或者存储空间有限的场景。和全局索引一样,Phoenix也会在查询的时候自动选择是否使用本地索引。本地索引因为索引数据和原数据存储在同一台机器上,避免网络数据传输的开销,所以更适合写多的场景。由于无法提前确定数据在哪个Region上,所以在读数据的时候,需要检查每个Region上的数据从而带来一些性能损耗。

       注意:对于本地索引,查询中无论是否指定hint或者是查询的列是否都在索引表中,都会使用索引表。

# 创建本地索引
CREATE LOCAL INDEX DIANXIN_LOCAL_IDEX ON DIANXIN(grid_id);

# 索引生效
select grid_id from dianxin where grid_id='117285031820040';

# 索引生效
select * from dianxin where grid_id='117285031820040';

 

2.3、覆盖索引

   覆盖索引是把原数据存储在索引数据表中,这样在查询时不需要再去HBase的原表获取数据就,直接返回查询结果。

   注意:查询是 select 的列和 where 的列都需要在索引中出现。

# 创建覆盖索引
CREATE INDEX DIANXIN_INDEX_COVER ON DIANXIN ( x,y ) INCLUDE ( county );

# 查询所有列 (索引未生效)
select * from DIANXIN where x=117.288 and y =31.822;

# 强制使用索引 (索引生效)
select /*+ INDEX(DIANXIN DIANXIN_INDEX_COVER) */ * from DIANXIN where x=117.288 and y =31.822;

# 查询索引中的列 (索引生效) mdn是DIANXIN表的RowKey中的一部分
select x,y,county from DIANXIN where x=117.288 and y =31.822;
select mdn,x,y,county from DIANXIN where x=117.288 and y =31.822;

# 查询条件必须放在索引中  select 中的列可以放在INCLUDE (将数据保存在索引中)
select /*+ INDEX(DIANXIN DIANXIN_INDEX_COVER) */ x,y,count(*) from DIANXIN group by x,y;

这篇关于Hbase中二级索引与Phoenix二级索引实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934522

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S