矩阵按列相乘运算的并行化实现方法

2024-04-25 10:04

本文主要是介绍矩阵按列相乘运算的并行化实现方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        这两天一直在琢磨如下矩阵计算问题。

        已知d×m矩阵X和h×q矩阵Y,求如下矩阵:

其中X(:,i), Y(:,j)分别表示矩阵X, Y的第i列和第j列,易知Z为d×h矩阵。

        如果直接串行计算矩阵Z,两个循环共有m×q,则会很慢,能不能并行化呢?

        实际上是可以的,为便于理解,我们先把Z写成如下形式:

对于矩阵Z中的第(r,s)个元素:

.

注意到第一个括号是X的第r行之和,第二个括号是Y的第s行之和。

        也就是说,矩阵Z中的第(r,s)个元素等于X的第r行之和乘以Y的第s行之和。因此,可以先分别将X和Y所有列对应相加,得到长为d的列向量Xsum和长为h的列向量Ysum,则Z等于Xsum乘以Ysum的转置。实际上,推导可以不用这么麻烦,对于目标计算式:

 

注意到第一个括号是将X所有列对应相加,第二个括号是将Y所有列对应相加,因此Z也就是前面提到的Xsum乘以Ysum的转置。

        Matlab代码如下:

function [ Z ] = Mtx_Col_Multi( X, Y )
% Mtx_Col_Multi returns Z = \sum_{i=1}^{m}\sum_{j=1}^{q} X(:,i)*Y(:,j)'
% Here, X(:,i) and Y(:,j) denote the i-th and j-th column of X and Y, respectively
% INPUT:
% X     - A dxm matrix
% Y     - A hxq matrix
% OUTPUT:
% Z     - A dxh matrixX_sum = sum(X,2);Y_sum = sum(Y,2);Z = X_sum*Y_sum';%dxh%     %This function implements the following procedure in parallel
%     Z = zeros(d,h);%dxh
%     for ii=1:m
%         x_i = X(:,ii);
%         for jj=1:q
%             y_j = Y(:,jj)';
%             Z = Z + x_i*y_j;
%         end
%     end    
end

        其实我真正想计算的是如下运算,里面包含一个系数:

其中C(i,j)是一个系数,是矩阵C中的第(i,j)个元素。那么这个运算能不能并行化呢?

        使用类似的思想:

 因此,可以编写如下函数:

function [ Z ] = Mtx_Coef_Col_Multi( X, Y, C )
% Mtx_Coef_Col_Multi returns Z = \sum_{i=1}^{m}\sum_{j=1}^{q} C(i,j)*X(:,i)*Y(:,j)'
% Here, X(:,i) and Y(:,j) denote the i-th and j-th column of X and Y, respectively
% C(i,j) denotes the item in i-th row and j-th column of C.
% INPUT:
% X     - A dxm matrix
% Y     - A hxq matrix
% C     - A mxq matrix
% OUTPUT:
% Z     - A dxh matrixd = size(X,1);h = size(Y,1);[m,q] = size(C);if q<mZ = zeros(d,h);%dxhfor jj=1:qy_j = Y(:,jj)';%1xhc_j = C(:,jj)';%1xmX_c = bsxfun(@times, X, c_j);%dxmX_sum = sum(X_c,2);%dx1Z = Z + X_sum*y_j;%dxhend       elseZ = zeros(d,h);%dxhfor ii=1:mx_i = X(:,ii);%dx1c_i = C(ii,:);%1xqY_c = bsxfun(@times, Y, c_i);%hxqY_sum = sum(Y_c,2);%hx1Z = Z + x_i*Y_sum';%dxhend end%     %This function implements the following procedure in parallel
%     Z = zeros(d,h);%dxh
%     for ii=1:m
%         x_i = X(:,ii);
%         for jj=1:q
%             y_j = Y(:,jj)';
%             Z = Z + C(ii,jj)*x_i*y_j;
%         end
%     end
end

可以使用如下代码测试一下上述并行化实现方法与串行实现的效率差异:

%demo for Mtx_Coef_Col_Multi
clc;clear;close;
d = 5;
m = 10000;
h = 8;
q = 50;
X = rand(d,m);
Y = rand(h,q);
C = rand(m,q);tic;
Z_serial = zeros(d,h);%dxh
for ii=1:mx_i = X(:,ii);for jj=1:qy_j = Y(:,jj)';Z_serial = Z_serial + C(ii,jj)*x_i*y_j;end
end
toc;
tic;
Z = Mtx_Coef_Col_Multi(X, Y, C);
toc;
norm(Z_serial-Z,'fro')

命令行窗口输出如下信息(有一定的随机性,每次运行结果有些差异):

时间已过 1.011418 秒。

时间已过 0.009981 秒。

ans =

   6.5505e-09

也就是在当前设置下,并行实现版本的效率提交了100倍左右。

这篇关于矩阵按列相乘运算的并行化实现方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934368

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll