代码随想录第44天|动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ

本文主要是介绍代码随想录第44天|动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划:完全背包理论基础

代码随想录 (programmercarl.com)

动态规划之完全背包,装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II_哔哩哔哩_bilibili

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

完全背包中的物品可以添加多次,所以要从小到大遍历:

// 先遍历物品,再遍历背包
for (int i = 0; i < weight.length; i++) { // 遍历物品for (int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);// dp[j]表示背包容量为j时的最大价值// dp[j - weight[i]]表示背包容量为j减去当前物品重量时的最大价值// value[i]表示当前物品的价值// Math.max(dp[j], dp[j - weight[i]] + value[i])表示在不超过背包容量的情况下,选择装入当前物品或者不装入当前物品的最大价值}
}

518.零钱兑换II

518. 零钱兑换 II - 力扣(LeetCode)

代码随想录 (programmercarl.com)

动态规划之完全背包,装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II_哔哩哔哩_bilibili

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

  • 输入: amount = 5, coins = [1, 2, 5]
  • 输出: 4

解释: 有四种方式可以凑成总金额:

  • 5=5
  • 5=2+2+1
  • 5=2+1+1+1
  • 5=1+1+1+1+1

示例 2:

  • 输入: amount = 3, coins = [2]
  • 输出: 0
  • 解释: 只用面额2的硬币不能凑成总金额3。

示例 3:

  • 输入: amount = 10, coins = [10]
  • 输出: 1

注意,你可以假设:

  • 0 <= amount (总金额) <= 5000
  • 1 <= coin (硬币面额) <= 5000
  • 硬币种类不超过 500 种
  • 结果符合 32 位符号整数

动规五部曲:

1、确定dp数组以及下标的含义:

dp[j] 凑成总金额j的货币组合数为dp[j];

2、确定递推公式:dp[j]就是所有的dp[j-coins[i]]相加,所以dp[j] += dp[j - coins[i]]

3、dp数组如何初始化:dp[0]=1;

4、确定遍历顺序:求组合是外层for循环遍历物品,内层for循环遍历背包;求排列就是外层for循环遍历背包,内层for循环遍历物品。

5、举例推导dp数组:输入:amounts=5, coins=[1,2,5]

综合代码:

class Solution {public int change(int amount, int[] coins) {//递推表达式int[] dp = new int[amount + 1];//初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装dp[0] = 1;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {dp[j] += dp[j - coins[i]];}}return dp[amount];}
}

 377. 组合总和 Ⅳ

377. 组合总和 Ⅳ - 力扣(LeetCode)

代码随想录 (programmercarl.com)

动态规划之完全背包,装满背包有几种方法?求排列数?| LeetCode:377.组合总和IV_哔哩哔哩_bilibili

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

题目数据保证答案符合 32 位整数范围。

示例 1:

输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。

示例 2:

输入:nums = [9], target = 3
输出:0

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 1000
  • nums 中的所有元素 互不相同
  • 1 <= target <= 1000

进阶:如果给定的数组中含有负数会发生什么?问题会产生何种变化?如果允许负数出现,需要向题目中添加哪些限制条件?

动规五部曲:

1、确定dp数组以及下标的含义:dp[i]:凑成目标正整数为i的排列个数为dp[i];

2、确定递推公式:dp[i] += dp[i - nums[j]];

3、dp数组如何初始化:dp[0]=1;

4、确定遍历顺序:如果求组合数就是外层for循环遍历物品,内层for循环遍历背包;

求排列数就是外层for循环遍历背包,内层for循环遍历物品;所以本题最终遍历顺序:target(背包)放在外层循环,nums(物品)放在内层循环,从前向后遍历;

5、举例推导dp数组:

和上一题的不同之处在于遍历顺序不同。

综合代码:

class Solution {// 定义一个名为Solution的类public int change(int amount, int[] coins) {// 创建一个名为change的公共方法,接受一个整数amount和一个整数数组coins作为参数,并返回一个整数int[] dp = new int[amount + 1];// 创建一个名为dp的整数数组,其长度为amount加1,用于存储不同金额的组合数量dp[0] = 1;// 初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装for (int i = 0; i < coins.length; i++) {// 遍历硬币数组for (int j = coins[i]; j <= amount; j++) {// 遍历金额,从当前硬币面额开始,直到目标金额dp[j] += dp[j - coins[i]];// 更新dp数组中的值,当前金额j的组合数量等于上一个金额(j - coins[i])的组合数量加上当前硬币的组合数量}}return dp[amount];// 返回目标金额amount的组合数量}
}

这篇关于代码随想录第44天|动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933727

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

Java JUC并发集合详解之线程安全容器完全攻略

《JavaJUC并发集合详解之线程安全容器完全攻略》Java通过java.util.concurrent(JUC)包提供了一整套线程安全的并发容器,它们不仅是简单的同步包装,更是基于精妙并发算法构建... 目录一、为什么需要JUC并发集合?二、核心并发集合分类与详解三、选型指南:如何选择合适的并发容器?在多