OpenCV 如何实现边缘检测器

2024-04-24 23:36
文章标签 实现 opencv 边缘 检测器

本文主要是介绍OpenCV 如何实现边缘检测器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

返回:OpenCV系列文章目录(持续更新中......)

上一篇:OpenCV如何实现拉普拉斯算子的离散模拟
下一篇 :OpenCV系列文章目录(持续更新中......)

目标

在本教程中,您将学习如何:

  • 使用 OpenCV 函数 cv::Canny 实现 Canny 边缘检测器。

理论

Canny Edge探测器[48]由John F. Canny于1986年开发。Canny 算法也被许多人称为最佳检测器,旨在满足三个主要标准:

  • 低错误率:这意味着仅对现有边缘的良好检测。
  • 良好的本地化:必须最小化检测到的边缘像素与实际边缘像素之间的距离。
  • 最小响应:每个边沿只有一个检测器响应。

步骤

  1. 过滤掉任何噪音。高斯滤波器用于此目的。可能使用的(size = 5)高斯核示例如下所示:

  1. 找到图像的强度渐变。为此,我们遵循类似于 Sobel 的过程:

 a).应用一对卷积掩码在 x 和y 方向上:

 

​编辑 

 b).通过以下方式找到梯度强度和方向::

​编辑

  1. 方向四舍五入为四个可能的角度之一(即 0、45、90 或 135)
  2. 应用非最大抑制。这将删除不被视为边的一部分的像素。因此,将只保留细线(候选边)。
  3. 滞后:最后一步。Canny 确实使用两个阈值(上限和下限):

    1. 如果像素渐变高于上限阈值,则该像素被接受为边缘
    2. 如果像素渐变值低于限阈值,则将拒绝该值。
    3. 如果像素渐变介于两个阈值之间,则仅当它连接到高于上限阈值的像素时,才会被接受。

    Canny 建议在 2:1 和 3:1 之间使用上比例。

  4. 有关更多详细信息,您可以随时查阅您最喜欢的计算机视觉书籍。

1、C++代码演示:

  • 教程代码如下所示。您也可以从这里下载
    #include "opencv2/imgproc.hpp"
    #include "opencv2/highgui.hpp"
    #include <iostream>using namespace cv;Mat src, src_gray;
    Mat dst, detected_edges;int lowThreshold = 0;
    const int max_lowThreshold = 100;
    const int ratio = 3;
    const int kernel_size = 3;
    const char* window_name = "Edge Map";static void CannyThreshold(int, void*)
    {blur( src_gray, detected_edges, Size(3,3) );Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );dst = Scalar::all(0);src.copyTo( dst, detected_edges);imshow( window_name, dst );
    }int main( int argc, char** argv )
    {CommandLineParser parser( argc, argv, "{@input | fruits.jpg | input image}" );src = imread( samples::findFile( parser.get<String>( "@input" ) ), IMREAD_COLOR ); // Load an imageif( src.empty() ){std::cout << "Could not open or find the image!\n" << std::endl;std::cout << "Usage: " << argv[0] << " <Input image>" << std::endl;return -1;}dst.create( src.size(), src.type() );cvtColor( src, src_gray, COLOR_BGR2GRAY );namedWindow( window_name, WINDOW_AUTOSIZE );createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold );CannyThreshold(0, 0);waitKey(0);return 0;
    }

  • 这个程序是做什么的?
    • 要求用户输入一个数值来设置我们的 Canny Edge Detector 的下限阈值(通过跟踪栏)。
    • 应用 Canny Detector 并生成蒙版(亮线表示黑色背景上的边缘)。
    • 应用在原始图像上获取的蒙版并将其显示在窗口中。

 创建一些需要的变量:

 2、说明(C++ 代码)

Mat src, src_gray;
Mat dst, detected_edges;int lowThreshold = 0;
const int max_lowThreshold = 100;
const int ratio = 3;
const int kernel_size = 3;
const char* window_name = "Edge Map";

  1. 请注意以下事项:

    1. 我们建立了 3:1 的下限:上限阈值(具有可变比率)。
    2. 我们将内核大小设置为 (用于由 Canny 函数在内部执行的 Sobel 操作)。3
    3. 我们为 的下限阈值设置了最大值。100
  2. 加载源图像:
 CommandLineParser parser( argc, argv, "{@input | fruits.jpg | input image}" );src = i mread( samples::findFile( parser.get<String>( "@input" ) ), IMREAD_COLOR ); // Load an imageif( src.empty() ){std::cout << "Could not open or find the image!\n" << std::endl;std::cout << "Usage: " << argv[0] << " <Input image>" << std::endl;return -1;}

  1. 创建一个与 src 类型和大小相同的矩阵(待 dst):
     dst.create( src.size(), src.type() );

  2. 将图像转换为灰度(使用函数 cv::cvtColor ):
     cvtColor( src, src_gray, COLOR_BGR2GRAY );

  3. 创建一个窗口来显示结果:
     namedWindow( window_name, WINDOW_AUTOSIZE );

  4. 为用户创建一个跟踪栏,以输入我们的 Canny 检测器的下限:
     createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold );

  5. 请注意以下事项:
    1. 要由 Trackbar 控制的变量是 lowThreshold,限制为 max_lowThreshold(我们之前将其设置为 100)
    2. 每次 Trackbar 注册操作时,都会调用回调函数 CannyThreshold
  6. 让我们一步一步地检查 CannyThreshold 函数:

 a、首先,我们用内核大小为 3 的过滤器对图像进行模糊处理

 blur( src_gray, detected_edges, Size(3,3) );

 b、其次,我们应用 OpenCV 函数 cv::Canny 

 Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );
  1. 其中参数为:
    • detected_edges:源图像、灰度
    • detected_edges:检测器输出(可与输入相同)
    • lowThreshold:用户移动跟踪栏时输入的值
    • highThreshold:在程序中设置为下限的三倍(遵循 Canny 的建议)
    • kernel_size:我们将其定义为 3(内部使用的 Sobel 内核的大小)

7、我们用零填充目标图像(表示图像完全是黑色的)。

 dst = Scalar::all(0);

8、最后,我们将使用函数 cv::Mat::copyTo 仅映射图像中标识为边缘的区域(在黑色背景上)。cv::Mat::copy将 src 映像复制到 dst 上。但是,它只会复制像素具有非零值的位置。由于 Canny 检测器的输出是黑色背景上的边缘轮廓,因此生成的 dst 在除检测到的边缘之外的所有区域都将是黑色的。

 src.copyTo( dst, detected_edges);

9、我们显示我们的结果

 imshow( window_name, dst );

结果

  • 编译上面的代码后,我们可以运行它,将图像的路径作为参数。例如,使用以下图像作为输入:

  • 移动滑块,尝试不同的阈值,我们得到以下结果:

​请注意图像如何叠加到边缘区域的黑色背景上。


参考文献:

1、《Canny Edge Detector》---Ana Huamán

这篇关于OpenCV 如何实现边缘检测器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933146

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测